• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[maximos e minimos] Problemas de minimos e maximos

[maximos e minimos] Problemas de minimos e maximos

Mensagempor amigao » Seg Jun 24, 2013 22:28

Não consegui fazer. Como começo.

Considere a curva y=1-x^2 , 0\leq x \leq1. Traçar uma tangente a curva tal que a area do triangulo que ela forma com os eixos coordenados seja minima.

agradeço.
amigao
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sáb Mai 11, 2013 11:52
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [maximos e minimos] Problemas de minimos e maximos

Mensagempor young_jedi » Ter Jun 25, 2013 17:49

primeiro calculando a derivada pra achar o coeficiente angular da reta tangente temos

f'(x)=-2x

vamos supor que a reta seja tangente a parábola em um ponto x=a sendo assim o coeficiente sera

-2a

e

y=1-a^2

portanto a equação da reta sera

\frac{y-(1-a^2)}{x-a}=-2a

y=-2a(x-a)+1-a^2

y=-2ax+a^2+1

agora encontrando os pontos onde ela cruza nos eixos

y_0=-2a.0+a^2+1

y_0=a^2+1

e

0=-2ax_0+a^2+1

x_0=\frac{a^2+1}{2a}

a área sera dada por

A=\frac{x_0.y_0}{2}=\frac{(1+a^2)(1+a^2)}{4a}=\frac{(1+a^2)^2}{4a}

derivando com relação a a para encontra o valor de máximo

A'=\frac{4a(1+a^2)}{4a}-\frac{(1+a^2)^2}{4a^2}


A'=\frac{3a^4+2a^2-1}{4a^2}=0

portanto

3a^4+2a^2-1=0

dai tiramos

a^2=\frac{1}{3}

a=\pm\frac{1}{\sqrt3}

com isso você determina a reta
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.