por Diego Silva » Ter Jun 18, 2013 21:17
![\lim_{\ x\to8}\frac{3\sqrt[3]{x}-6)}{x-8} \lim_{\ x\to8}\frac{3\sqrt[3]{x}-6)}{x-8}](/latexrender/pictures/dcfcb71301e124c88a5479dde522cf1b.png)
tentei fazer mas não consegui, parece ser simples mas não peguei a logica
-
Diego Silva
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Ter Jun 11, 2013 18:22
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Engenharia Química
- Andamento: cursando
por temujin » Ter Jun 18, 2013 23:16
Essa é uma indeterminação

, então vc pode aplicar l'Hospital:
![\lim_{x \to 8} \frac{3 \sqrt[3]{x}-6}{x-8}=\lim_{x \to 8}\frac{3.\frac{1}{3}.\frac{1}{x^{2/3}}}{1}=\lim_{x \to 8} \frac{1}{x^{2/3}}=\frac{1}{4} \lim_{x \to 8} \frac{3 \sqrt[3]{x}-6}{x-8}=\lim_{x \to 8}\frac{3.\frac{1}{3}.\frac{1}{x^{2/3}}}{1}=\lim_{x \to 8} \frac{1}{x^{2/3}}=\frac{1}{4}](/latexrender/pictures/0b5eced673047b55d228379f164cef59.png)
-
temujin
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Qui Mar 14, 2013 15:11
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Economia
- Andamento: formado
por Diego Silva » Qua Jun 19, 2013 21:00
temujin escreveu:Essa é uma indeterminação

, então vc pode aplicar l'Hospital:
![\lim_{x \to 8} \frac{3 \sqrt[3]{x}-6}{x-8}=\lim_{x \to 8}\frac{3.\frac{1}{3}.\frac{1}{x^{2/3}}}{1}=\lim_{x \to 8} \frac{1}{x^{2/3}}=\frac{1}{4} \lim_{x \to 8} \frac{3 \sqrt[3]{x}-6}{x-8}=\lim_{x \to 8}\frac{3.\frac{1}{3}.\frac{1}{x^{2/3}}}{1}=\lim_{x \to 8} \frac{1}{x^{2/3}}=\frac{1}{4}](/latexrender/pictures/0b5eced673047b55d228379f164cef59.png)
estou em limite ainda não sei L'Hospital tem outra forma, mesmo que seja mais trabalhosa?
-
Diego Silva
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Ter Jun 11, 2013 18:22
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Engenharia Química
- Andamento: cursando
por temujin » Qua Jun 19, 2013 22:33
Aí vc precisaria encontrar alguma forma de fatorar, mas agora eu não consigo ver nenhuma...
Se mais alguém souber, por favor se manifeste.

-
temujin
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Qui Mar 14, 2013 15:11
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Economia
- Andamento: formado
por e8group » Qua Jun 19, 2013 23:13
Podemos deixar em evidência o número 3 , e ainda usando propriedades operatórias de limites ,obtemos :
![\lim_{x\to 8} \frac{3\sqrt[3]{x} -6}{x-8} = 3 \lim_{x\to 8} \frac{\sqrt[3]{x} -2}{x-8} \lim_{x\to 8} \frac{3\sqrt[3]{x} -6}{x-8} = 3 \lim_{x\to 8} \frac{\sqrt[3]{x} -2}{x-8}](/latexrender/pictures/d0b4924bd368e3942006ef4247732ea0.png)
.
Mas ,
![x - 8 = (\sqrt[3]{x})^3 - 2^3 = (\sqrt[3]{x} - 2)((\sqrt[3]{x})^2 + 2\sqrt[3]{x} + 4) x - 8 = (\sqrt[3]{x})^3 - 2^3 = (\sqrt[3]{x} - 2)((\sqrt[3]{x})^2 + 2\sqrt[3]{x} + 4)](/latexrender/pictures/755a976603bb7917ab7f3cc7e418650c.png)
.
Assim ,
![\lim_{x\to 8} \frac{3\sqrt[3]{x} -6}{x-8} = 3 \lim_{x\to 8} \frac{\sqrt[3]{x} -2}{(\sqrt[3]{x} - 2)((\sqrt[3]{x})^2 + 2\sqrt[3]{x} + 4)} \lim_{x\to 8} \frac{3\sqrt[3]{x} -6}{x-8} = 3 \lim_{x\to 8} \frac{\sqrt[3]{x} -2}{(\sqrt[3]{x} - 2)((\sqrt[3]{x})^2 + 2\sqrt[3]{x} + 4)}](/latexrender/pictures/e0002c4ecacd360b4a85b90bbbc7e982.png)
.
Agora tente concluir .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite trigonométrico] Como calculo este limite?
por Ronaldobb » Qua Nov 07, 2012 23:14
- 3 Respostas
- 4741 Exibições
- Última mensagem por Ronaldobb

Qui Nov 08, 2012 07:37
Cálculo: Limites, Derivadas e Integrais
-
- limite.como calculo esse limite?
por jeffinps » Ter Mar 12, 2013 12:07
- 1 Respostas
- 2067 Exibições
- Última mensagem por Douglas16

Ter Mar 12, 2013 14:27
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] AJUDA Calculo de Limite
por will94 » Ter Mai 22, 2012 20:32
- 1 Respostas
- 2011 Exibições
- Última mensagem por LuizAquino

Qua Mai 23, 2012 11:46
Cálculo: Limites, Derivadas e Integrais
-
- [Cálculo de Limite] Resolução de um limite
por julianocoutinho » Seg Mai 13, 2013 01:47
- 3 Respostas
- 3094 Exibições
- Última mensagem por Man Utd

Qua Mai 15, 2013 22:26
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] calculo de limite trigonométrico
por PRADO » Dom Mai 22, 2016 17:01
- 2 Respostas
- 5292 Exibições
- Última mensagem por PRADO

Sex Jun 03, 2016 23:25
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.