• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada] Derivada por definição

[Derivada] Derivada por definição

Mensagempor temujin » Qui Mai 16, 2013 13:07

V ou F:

Se f'(a) = 5, então, \lim_{h\rightarrow 0}\frac{f(a+h)-f(a-h)}{f(a-2h)-f(a+3h)}=1
temujin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Qui Mar 14, 2013 15:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: formado

Re: [Derivada] Derivada por definição

Mensagempor Man Utd » Qui Mai 16, 2013 20:19

olá.
f'(a)=5\Leftrightarrow f(a)=5a

\\\\ \lim_{h\rightarrow 0}\frac{f(a+h)-f(a-h)}{f(a-2h)-f(a+3h)} \\\\\\ \lim_{h\rightarrow 0}\frac{5a+5h-5a+5h}{5a-10h-5a-15h} \\\\\\ \lim_{h\rightarrow 0}\frac{10h}{-25h} \\\\\\ \lim_{h\rightarrow 0}\frac{10}{-25}=-\frac{10}{25}=-\frac{2}{5}

vc tem o gabarito?
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: [Derivada] Derivada por definição

Mensagempor e8group » Qui Mai 16, 2013 22:12

Man Utd ,tome cuidado ! Não necessariamente f'(a) =5 \implies f(a) = 5a e f(a) = 5a \implies f'(a)=5 .Além disso ,você está considerando que a é a variável independente da função f,note que a pode ser também apenas um ponto do domínio da função ftal que sua derivada aplicada neste ponto resulta 5,isto é ,f'(a) = 5 .

O que podemos fazer é usar a hipótese f'(a) = 5 e manipular o limite de forma que ele fique com a forma do limite que é a definição da derivada .Observe :


\lim_{h\to0} \frac{f(a+h)-f(a-h)}{f(a-2h)-f(a+3h)}= \lim_{h\to0} \frac{\dfrac{f(a+h)- f(a)}{h}- \dfrac{f(a-h)-f(a)}{h}}{\dfrac{f(a-2h)- f(a)}{h}- \dfrac{f(a+3h)-f(a)}{h}} .


Agora tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Derivada] Derivada por definição

Mensagempor temujin » Sex Mai 17, 2013 00:04

santhiago escreveu:Man Utd ,tome cuidado ! Não necessariamente f'(a) =5 \implies f(a) = 5a e f(a) = 5a \implies f'(a)=5 .Além disso ,você está considerando que a é a variável independente da função f,note que a pode ser também apenas um ponto do domínio da função ftal que sua derivada aplicada neste ponto resulta 5,isto é ,f'(a) = 5 .

O que podemos fazer é usar a hipótese f'(a) = 5 e manipular o limite de forma que ele fique com a forma do limite que é a definição da derivada .Observe :


\lim_{h\to0} \frac{f(a+h)-f(a-h)}{f(a-2h)-f(a+3h)}= \lim_{h\to0} \frac{\dfrac{f(a+h)- f(a)}{h}- \dfrac{f(a-h)-f(a)}{h}}{\dfrac{f(a-2h)- f(a)}{h}- \dfrac{f(a+3h)-f(a)}{h}} .


Agora tente concluir .


É falso mesmo. Eis a solução de um colega em outro fórum:

\lim_{h\to0} \frac{f(a+h)-f(a-h)}{f(a-2h)-f(a+3h)}= \lim_{h\to0} \frac{\dfrac{f(a+h)- f(a)}{5h}- \dfrac{f(a-h)-f(a)}{5h}}{\dfrac{f(a-2h)- f(a)}{5h}- \dfrac{f(a+3h)-f(a)}{5h}} = \lim_{h\to0} \frac{\dfrac{1}{5}.\dfrac{f(a+h)- f(a)}{h}+ \dfrac{1}{5}.\dfrac{f(a-h)-f(a)}{-h}}{\dfrac{f(a-2h)- f(a+3h)}{5h}} = \lim_{h\to0} \frac{\dfrac{1}{5}.f'(a)+ \dfrac{1}{5}.f'(a)}{-\dfrac{f(a-2h+5h)- f(a-2h)}{5h}} = \lim_{h\to0} \frac{-2}{f'(a-2h)}

Como h tende a zero, f'(a-2h)=f'(a). Portanto, \lim_{h\to0} \frac{-2}{f'(a-2h)}=\frac{-2}{5}
temujin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Qui Mar 14, 2013 15:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: formado

Re: [Derivada] Derivada por definição

Mensagempor Man Utd » Sex Mai 17, 2013 18:50

desculpe pela confusão :$ , e obrigado pelo esclarecimento, foi uma coincidência que os resultados finais foram iguais.
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?