• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada] Derivada por definição

[Derivada] Derivada por definição

Mensagempor temujin » Qui Mai 16, 2013 13:07

V ou F:

Se f'(a) = 5, então, \lim_{h\rightarrow 0}\frac{f(a+h)-f(a-h)}{f(a-2h)-f(a+3h)}=1
temujin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Qui Mar 14, 2013 15:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: formado

Re: [Derivada] Derivada por definição

Mensagempor Man Utd » Qui Mai 16, 2013 20:19

olá.
f'(a)=5\Leftrightarrow f(a)=5a

\\\\ \lim_{h\rightarrow 0}\frac{f(a+h)-f(a-h)}{f(a-2h)-f(a+3h)} \\\\\\ \lim_{h\rightarrow 0}\frac{5a+5h-5a+5h}{5a-10h-5a-15h} \\\\\\ \lim_{h\rightarrow 0}\frac{10h}{-25h} \\\\\\ \lim_{h\rightarrow 0}\frac{10}{-25}=-\frac{10}{25}=-\frac{2}{5}

vc tem o gabarito?
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: [Derivada] Derivada por definição

Mensagempor e8group » Qui Mai 16, 2013 22:12

Man Utd ,tome cuidado ! Não necessariamente f'(a) =5 \implies f(a) = 5a e f(a) = 5a \implies f'(a)=5 .Além disso ,você está considerando que a é a variável independente da função f,note que a pode ser também apenas um ponto do domínio da função ftal que sua derivada aplicada neste ponto resulta 5,isto é ,f'(a) = 5 .

O que podemos fazer é usar a hipótese f'(a) = 5 e manipular o limite de forma que ele fique com a forma do limite que é a definição da derivada .Observe :


\lim_{h\to0} \frac{f(a+h)-f(a-h)}{f(a-2h)-f(a+3h)}= \lim_{h\to0} \frac{\dfrac{f(a+h)- f(a)}{h}- \dfrac{f(a-h)-f(a)}{h}}{\dfrac{f(a-2h)- f(a)}{h}- \dfrac{f(a+3h)-f(a)}{h}} .


Agora tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Derivada] Derivada por definição

Mensagempor temujin » Sex Mai 17, 2013 00:04

santhiago escreveu:Man Utd ,tome cuidado ! Não necessariamente f'(a) =5 \implies f(a) = 5a e f(a) = 5a \implies f'(a)=5 .Além disso ,você está considerando que a é a variável independente da função f,note que a pode ser também apenas um ponto do domínio da função ftal que sua derivada aplicada neste ponto resulta 5,isto é ,f'(a) = 5 .

O que podemos fazer é usar a hipótese f'(a) = 5 e manipular o limite de forma que ele fique com a forma do limite que é a definição da derivada .Observe :


\lim_{h\to0} \frac{f(a+h)-f(a-h)}{f(a-2h)-f(a+3h)}= \lim_{h\to0} \frac{\dfrac{f(a+h)- f(a)}{h}- \dfrac{f(a-h)-f(a)}{h}}{\dfrac{f(a-2h)- f(a)}{h}- \dfrac{f(a+3h)-f(a)}{h}} .


Agora tente concluir .


É falso mesmo. Eis a solução de um colega em outro fórum:

\lim_{h\to0} \frac{f(a+h)-f(a-h)}{f(a-2h)-f(a+3h)}= \lim_{h\to0} \frac{\dfrac{f(a+h)- f(a)}{5h}- \dfrac{f(a-h)-f(a)}{5h}}{\dfrac{f(a-2h)- f(a)}{5h}- \dfrac{f(a+3h)-f(a)}{5h}} = \lim_{h\to0} \frac{\dfrac{1}{5}.\dfrac{f(a+h)- f(a)}{h}+ \dfrac{1}{5}.\dfrac{f(a-h)-f(a)}{-h}}{\dfrac{f(a-2h)- f(a+3h)}{5h}} = \lim_{h\to0} \frac{\dfrac{1}{5}.f'(a)+ \dfrac{1}{5}.f'(a)}{-\dfrac{f(a-2h+5h)- f(a-2h)}{5h}} = \lim_{h\to0} \frac{-2}{f'(a-2h)}

Como h tende a zero, f'(a-2h)=f'(a). Portanto, \lim_{h\to0} \frac{-2}{f'(a-2h)}=\frac{-2}{5}
temujin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Qui Mar 14, 2013 15:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: formado

Re: [Derivada] Derivada por definição

Mensagempor Man Utd » Sex Mai 17, 2013 18:50

desculpe pela confusão :$ , e obrigado pelo esclarecimento, foi uma coincidência que os resultados finais foram iguais.
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}