• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite] Demonstração de um limite

[Limite] Demonstração de um limite

Mensagempor Fabio Marquez » Ter Mai 14, 2013 11:30

Olá pessoal, tudo bem? Então, estou com um problema para demonstrar que \lim_{x\rightarrow0} \frac{a^x-1}{x} = ln a. Eu comecei fazendo u=a^x-1 e achei x = \frac{lnu+1}{lna}, mas não consegui avançar até ln a, como posso provar isso? (lnu e lna são logaritmos naturais)
Fabio Marquez
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Abr 20, 2013 20:01
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia de Computação
Andamento: cursando

Re: [Limite] Demonstração de um limite

Mensagempor Man Utd » Ter Mai 14, 2013 21:27

olá.
usando substituição:
\\\\ u=a^{x}-1 \\\\ a^{x}=u+1 \\\\ ln a^{x}=ln(1+u) \\\\ x.ln a=ln(1+u) \\\\ x=\frac{ln(1+u)}{ln a}

agora aplicando no limite:
\\\\ \lim_{u\rightarrow 0}\frac{u}{\frac{ln(1+u)}{lna}} \\\\\\ \lim_{u\rightarrow 0}\frac{lna*u}{ln(1+u)} \\\\\\ \lim_{u\rightarrow 0}{\frac{lna*u:u}{ln(1+u):u} \Rightarrow \lim_{u\rightarrow 0}\frac{lna}{\frac{ln(1+u)}{u}} \Rightarrow \lim_{u\rightarrow 0}\frac{lna}{\frac{1}{u}*ln(1+u)}}
\\\\ \lim_{u\rightarrow 0}\frac{lna}{ln(1+u)^{\frac{1}{u}}}} \\\\\\ \frac{\lim_{u\rightarrow 0}lna}{\lim_{ u\rightarrow 0}{ln(1+u)^{\frac{1}{u}}}} \\\\\\ \frac{lna}{ln(\lim_{ u\rightarrow 0}{(1+u)^{\frac{1}{u}})}} \\\\\\ \frac{lna}{lne}=lna
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: [Limite] Demonstração de um limite

Mensagempor Fabio Marquez » Ter Mai 14, 2013 23:55

Muuitíssimo obrigado pela explicação!
Fabio Marquez
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Abr 20, 2013 20:01
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia de Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.