• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[DERIVADA DE 2ª ORDEM] FORMA PARAMÉTRICA

[DERIVADA DE 2ª ORDEM] FORMA PARAMÉTRICA

Mensagempor fabriel » Sex Mai 03, 2013 12:59

Oi pessoal to com uma duvida no resultado aqui:
Exercicio: Seja C a curva com parametrização x=e^{-t} , y=e^{2t} ; t\in R determine \frac{dy}{dx} e \frac{{d}^{2}y}{{dx}^{2}}
Eu resolvi da seguinte maneira:

\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{{2e}^{2t}}{{-e}^{-t}}

\frac{{d}^{2}y}{{dx}^{2}}=\frac{\frac{d}{dt}\left({2e}^{2t} \right)}{\frac{d}{dt}\left({-e}^{-t} \right)}= \frac{4{e}^{2t}}{{e}^{-t}}={4e}^{3t}

Até ai sem nenhum problema mas veja, se eu tivesse pegado a \frac{dy}{dx}=\frac{{2e}^{2t}}{-{e}^{-t}}=-2{e}^{3t} e logo em seguida derivasse isso olha o que aconteceria

\frac{{d}^{2}y}{{dx}^{2}}= -6{e}^{3t}

Que no caso é diferente do resultado que obtive na primeira resolução da derivada segunda, qual é que esta errada?
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: [DERIVADA DE 2ª ORDEM] FORMA PARAMÉTRICA

Mensagempor young_jedi » Dom Mai 05, 2013 19:02

você teria que

\frac{d^2y}{dx^2}=\frac{\frac{d}{dt}\left(\frac{2e^{2t}}{-e^{-t}}\right)}{-e^{-t}}

tente concluir e comente as duvidas
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [DERIVADA DE 2ª ORDEM] FORMA PARAMÉTRICA

Mensagempor fabriel » Seg Mai 06, 2013 01:41

Não entendi muito bem essa passagem
young_jedi escreveu:você teria que

\frac{d^2y}{dx^2}=\frac{\frac{d}{dt}\left(\frac{2e^{2t}}{-e^{-t}}\right)}{-e^{-t}}

tente concluir e comente as duvidas


é muito confusa a derivada de funções dada na forma paramétrica, quando se trata na derivada de 2ª ordem pra frente

Mas se isso for o correto, então a resposta seria: \frac{\frac{{4e}^{2t}}{{e}^{-t}}}{{-e}^{-t}}=-4{e}^{4t}

Que é bem diferente das respostas que obtive antes.
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: [DERIVADA DE 2ª ORDEM] FORMA PARAMÉTRICA

Mensagempor young_jedi » Seg Mai 06, 2013 21:55

note que

\frac{d}{dt}\left(\frac{2e^{2t}}{-e^{-t}}\right)=\frac{4e^{2t}}{-e^{-t}}+\frac{2e^{2t}}{-e^{-t}}

=\frac{6e^{2t}}{-e^{-t}}=-6e^{3t}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}