• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite] Provar continuidade

[Limite] Provar continuidade

Mensagempor Man Utd » Qua Abr 03, 2013 09:41

Prove que f(x)=x^2 é continua, para todo ''x'' real.

comecei assim: 0<|x-c|<? e |f(x)-f(p)|<? , quando f=0, ou seja contínua em 0

|x|<?

|x^2|<?
?|x^2|<??
|x|<??

então ?=??,ñ sei continuar alguem pode me ajudar?
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: [Limite] Provar continuidade

Mensagempor e8group » Qua Abr 03, 2013 11:19

Esta questão é bem interessante ,há uma demostração dela no seguinte link : http://pt.wikibooks.org/wiki/An%C3%A1li ... e#Exemplos .Se conseguir concluir o exercício e quiser compartilhar com a comunidade fique à vontade .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Limite] Provar continuidade

Mensagempor Man Utd » Qua Abr 03, 2013 19:43

achei a resposta no livro,mas ñ entendi os passos seguintes:

provando para p?0

p^2-?<x^2<p^2+?
?p^2-?<|x|<?p^2+?------obs: p^2>? e ?>0.

se p>0, tomamos I=]?p^2-?,?p^2+?[, assim:

x ? I------p^2-?<x^2<p^2

se p<0, tomamos I=]-?p^2+?<x^2<-?p^2-?[

x ? I------p^2-?<x^2<p^2


logo f(x)=x^2 é continua em todo seu dominio.

ñ entendi essas partes, já provei limites pela definição, mas nunca continuidade alguem pode explicar?
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}