• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites infinitos com raiz

Limites infinitos com raiz

Mensagempor Erick » Sáb Mar 30, 2013 11:11

Olá, segunda terei a 1°prova de calculo mas ainda tenho alguns problemas para resolve limites infinitos dentro de raizes, como por exemplo:
\lim_{x->\infty}\frac{x+\sqrt{x+3}}{2x-1} pois eu devo deixar o x em evidencia dentro ou fora da raiz? Se eu for deixar ele dentro da raiz, ao tirá-lo ficara x+(x^1/2)*1/(2x-1), e na resposta do livro esta dizendo q o resultado é 1/2. Como eu chego nisso?
Gostaria que pudessem me ajudar, pois n sei como posso resolver limites qnd esta dentro da raiz, sempre acabo me confundindo.
Grato desde ja
Erick
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Mar 17, 2013 13:04
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Limites infinitos com raiz

Mensagempor young_jedi » Sáb Mar 30, 2013 12:05

\lim_{x\to\infty}\frac{x+\sqrt{x+3}}{2x-1}=\lim_{x\to\infty}\frac{x+\sqrt{\frac{x^2}{x}+\frac{3x^2}{x^2}}}{2x-\frac{x}{x}}

\lim_{x\to\infty}\frac{x+\sqrt{x^2\left(\frac{1}{x}+\frac{3}{x^2}\right)}}{x\left(2-\frac{1}{x}\right)}

\lim_{x\to\infty}\frac{x+x\sqrt{\frac{1}{x}+\frac{3}{x^2}}}{x\left(2-\frac{1}{x}\right)}

\lim_{x\to\infty}\frac{1+\sqrt{\frac{1}{x}+\frac{3}{x^2}}}{2-\frac{1}{x}}

quando x tende ao infinitod os termos que tem x tendem para 0 e com isso

\lim_{x\to\infty}\frac{1+\sqrt{\frac{1}{x}+\frac{3}{x^2}}}{2-\frac{1}{x}}=\frac{1}{2}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?