• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites infinitos com raiz

Limites infinitos com raiz

Mensagempor Erick » Sáb Mar 30, 2013 11:11

Olá, segunda terei a 1°prova de calculo mas ainda tenho alguns problemas para resolve limites infinitos dentro de raizes, como por exemplo:
\lim_{x->\infty}\frac{x+\sqrt{x+3}}{2x-1} pois eu devo deixar o x em evidencia dentro ou fora da raiz? Se eu for deixar ele dentro da raiz, ao tirá-lo ficara x+(x^1/2)*1/(2x-1), e na resposta do livro esta dizendo q o resultado é 1/2. Como eu chego nisso?
Gostaria que pudessem me ajudar, pois n sei como posso resolver limites qnd esta dentro da raiz, sempre acabo me confundindo.
Grato desde ja
Erick
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Mar 17, 2013 13:04
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Limites infinitos com raiz

Mensagempor young_jedi » Sáb Mar 30, 2013 12:05

\lim_{x\to\infty}\frac{x+\sqrt{x+3}}{2x-1}=\lim_{x\to\infty}\frac{x+\sqrt{\frac{x^2}{x}+\frac{3x^2}{x^2}}}{2x-\frac{x}{x}}

\lim_{x\to\infty}\frac{x+\sqrt{x^2\left(\frac{1}{x}+\frac{3}{x^2}\right)}}{x\left(2-\frac{1}{x}\right)}

\lim_{x\to\infty}\frac{x+x\sqrt{\frac{1}{x}+\frac{3}{x^2}}}{x\left(2-\frac{1}{x}\right)}

\lim_{x\to\infty}\frac{1+\sqrt{\frac{1}{x}+\frac{3}{x^2}}}{2-\frac{1}{x}}

quando x tende ao infinitod os termos que tem x tendem para 0 e com isso

\lim_{x\to\infty}\frac{1+\sqrt{\frac{1}{x}+\frac{3}{x^2}}}{2-\frac{1}{x}}=\frac{1}{2}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.