por fabriel » Sex Mar 22, 2013 13:09
Oi pessoal, tudo bem?
Então, estou com duvidas na resolução dessa integral:
![2\int_{0}^{\frac{\pi}{2}}(cos t) \sqrt[]{1+4{sen}^{2}t}dt 2\int_{0}^{\frac{\pi}{2}}(cos t) \sqrt[]{1+4{sen}^{2}t}dt](/latexrender/pictures/ebb2c7c7727ad910c7f3366cff7bb9d9.png)
Ai fiz o seguinte:
Chamei

Então

Logo
![=2\int_{0}^{\frac{\pi}{2}}\sqrt[]{1+4{u}^{2}}du =2\int_{0}^{\frac{\pi}{2}}\sqrt[]{1+4{u}^{2}}du](/latexrender/pictures/35a46c0b0d78300acd94e875e8bd3e97.png)
Ai resolvendo a integral, vamos chegar na seguinte expressão:
![\frac{4}{3}\sqrt[]{{\left(1+4{u}^{2} \right)}^{3}}= \frac{4}{3}\sqrt[]{{\left(1+4{sen}^{2}t \right)}^{3}} \frac{4}{3}\sqrt[]{{\left(1+4{u}^{2} \right)}^{3}}= \frac{4}{3}\sqrt[]{{\left(1+4{sen}^{2}t \right)}^{3}}](/latexrender/pictures/33a51ccc8c9a7c6aab796228f0747e1c.png)
Avaliados nos pontos pi/2 e 0.
Ai teremos:
![\frac{4}{3}\sqrt[]{{\left(1+4{sen}^{2}\left(\frac{\pi}{2} \right) \right)}^{3}} - \frac{4}{3}\sqrt[]{{\left(1+4{sen}^{2}\left(0) \right)}^{3}} \frac{4}{3}\sqrt[]{{\left(1+4{sen}^{2}\left(\frac{\pi}{2} \right) \right)}^{3}} - \frac{4}{3}\sqrt[]{{\left(1+4{sen}^{2}\left(0) \right)}^{3}}](/latexrender/pictures/e3dedb381c930fb8a522d0669378b7f7.png)
e que resulta em:
![\frac{20\sqrt[]{5}}{3}-\frac{4}{3} \frac{20\sqrt[]{5}}{3}-\frac{4}{3}](/latexrender/pictures/713bf04559858b3a66ed93969e821eaf.png)
Mas o livro diz que o resultado é:
![\frac{1}{2}\left(2\sqrt[]{5}+ln(2+\sqrt[]{5} \right) \frac{1}{2}\left(2\sqrt[]{5}+ln(2+\sqrt[]{5} \right)](/latexrender/pictures/36620ab033c2b7712fb06fa83255096f.png)
Então qual foi meu erro?? Foi na hora da substituição?
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
-

fabriel
- Usuário Parceiro

-
- Mensagens: 88
- Registrado em: Ter Mai 22, 2012 16:04
- Localização: Chapadão do Sul-MS
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
por young_jedi » Sáb Mar 23, 2013 16:42
a integral em u que voce fez não da aquele resultado,
ela é uma integral como raiz e um u ao quadrado dentro dela, ela é um pouco complicada de se resolver
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integral definida - Resolução
por vmouc » Qui Set 01, 2011 18:03
- 4 Respostas
- 2623 Exibições
- Última mensagem por LuizAquino

Qui Set 01, 2011 18:54
Cálculo: Limites, Derivadas e Integrais
-
- [Resolução de Integral Definida]
por Seza Saenz » Qui Mar 24, 2016 15:18
- 0 Respostas
- 1918 Exibições
- Última mensagem por Seza Saenz

Qui Mar 24, 2016 15:18
Cálculo: Limites, Derivadas e Integrais
-
- [Integral Definida] Está certa minha resolução?
por Fabio Wanderley » Seg Out 22, 2012 23:37
- 2 Respostas
- 1839 Exibições
- Última mensagem por Fabio Wanderley

Ter Out 23, 2012 00:45
Cálculo: Limites, Derivadas e Integrais
-
- Dúvidas sobre resolução
por MaraFernandes » Qua Mar 02, 2011 10:36
- 4 Respostas
- 2829 Exibições
- Última mensagem por MaraFernandes

Qui Mar 03, 2011 17:40
Sistemas de Equações
-
- Resolução por escalonamento e cramer dúvidas
por Fernanda Lauton » Qui Jun 10, 2010 19:37
- 4 Respostas
- 8309 Exibições
- Última mensagem por Fernanda Lauton

Sex Jun 11, 2010 12:06
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.