• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite] limite trigonometrico

[Limite] limite trigonometrico

Mensagempor Ge_dutra » Qua Jan 30, 2013 23:38

Boa noite, peço auxilio para resolver uma questão:

\lim_{x\rightarrow0}senx.cos\left(\frac{1}{x} \right)

O gabarito é zero, porém, penso que o argumento do cosseno, quando x tender a zero, vai tender ao infinito, portanto não existindo.
Então não existiria também a multiplicação de zero(senx) por um cosseno não existente.

Gostaria de saber se estou pensando errado, ou se tenho que reescrever o limite, de modo a não modificá-lo.

Desde já, agradeço.
Ge_dutra
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Jan 28, 2013 09:45
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [Limite] limite trigonometrico

Mensagempor e8group » Qui Jan 31, 2013 15:01

Basta notar que a função cosseno é limitada i.e., \forall x \in \mathbb{R} - \{0\} \implies  | cos(1/x)| \leq 1 .Portanto ,tome o produto dos limites e conclua que o limite do seno é zero.

Outra forma seria estabelcer uma desigualdade entre funções de forma que os limites dos extremos existam e sejam iguais e aplicar o teorema do confronto
Para obter isto , inicialmente vamos considerar g(x) = sin(x) e h(x) =  - sin(x) . Veja porque , 1 \geq cos(1/x) \geq -1  , \forall x \in \mathbb{R}- \{0\} .Multiplicando-se a desigualdade por sin(x)  ,  x \neq 0 ,temos :

sin(x) \geq sin(x) cos(1/x) \geq - sin(x) e como \lim_{x\to0} g(x) = \lim_{x\to0} h(x) = 0 pelo
teorema do confronto concluímos que \lim_{x\to0} sin(x) cos(1/x) = 0 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Limite] limite trigonometrico

Mensagempor Ge_dutra » Qui Jan 31, 2013 22:30

santhiago escreveu:Basta notar que a função cosseno é limitada i.e., \forall x \in \mathbb{R} - \{0\} \implies  | cos(1/x)| \leq 1 .Portanto ,tome o produto dos limites e conclua que o limite do seno é zero.

Outra forma seria estabelcer uma desigualdade entre funções de forma que os limites dos extremos existam e sejam iguais e aplicar o teorema do confronto
Para obter isto , inicialmente vamos considerar g(x) = sin(x) e h(x) =  - sin(x) . Veja porque , 1 \geq cos(1/x) \geq -1  , \forall x \in \mathbb{R}- \{0\} .Multiplicando-se a desigualdade por sin(x)  ,  x \neq 0 ,temos :

sin(x) \geq sin(x) cos(1/x) \geq - sin(x) e como \lim_{x\to0} g(x) = \lim_{x\to0} h(x) = 0 pelo
teorema do confronto concluímos que \lim_{x\to0} sin(x) cos(1/x) = 0 .



Acho que entendi, obrigada.
Ge_dutra
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Jan 28, 2013 09:45
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)