por iarapassos » Qui Jan 03, 2013 18:52
A questão é o seguinte:
Calcule a área plana limitada pelas funções:

,

e

.
Achei que seria o seguinte:
Como sabemos, através do estudo deste assunto. Temos que a região será a integral de f(x)-g(x), sendo f(x)>=g(x).
Bem, também sabemos que essa area deve ser subdivida em duas areas menores. A Area total será a soma de S1 e S2.
A minha dúvida é: Eu tenho três funções. Neste caso, a area entre elas será a maior menos as outras? Ou eu subtraio apenas uma?
Me ajudem , please!
-
iarapassos
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Qua Ago 29, 2012 12:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Controle e Automação
- Andamento: cursando
por Russman » Qui Jan 03, 2013 20:16
E acredito que a área a ser calculada é a em forma triangular, bem do centro do gráfico.

- Grafico
- ScreenHunter_02 Jan. 03 20.31.gif (3.88 KiB) Exibido 2496 vezes
Se sim, então você deve ir subtraindo e adicionando áreas menores de forma a varrer somente a de interesse. Os vértices da área são respectivamente

,

e

.
Eu adicionaria a área de

até

do gráfico de

, subtrairia a parte de baixo que é a área do gráfico de

de

até

, completaria com a área de

de

até

e por fim descontaria o que resta , que é a area de

de

até

.
Acredito que assim conseguimos varrer a área que foi limitada pelas 3 funções. A sua integral é

"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integral, área da região limitada.
por Maicon Simoes » Qui Abr 19, 2012 10:58
- 1 Respostas
- 1811 Exibições
- Última mensagem por LuizAquino

Qui Abr 19, 2012 15:00
Cálculo: Limites, Derivadas e Integrais
-
- Como encontrar a área limitada por duas funções?
por VenomForm » Qua Fev 27, 2013 15:09
- 2 Respostas
- 2710 Exibições
- Última mensagem por Russman

Qua Fev 27, 2013 19:14
Cálculo: Limites, Derivadas e Integrais
-
- região R limitada
por Ana Maria da Silva » Qui Out 31, 2013 11:14
- 2 Respostas
- 1854 Exibições
- Última mensagem por Ana Maria da Silva

Seg Nov 04, 2013 20:54
Cálculo: Limites, Derivadas e Integrais
-
- AREA LIMITADA
por ELCIO GOMES DE SOUZA » Dom Ago 24, 2008 16:55
- 3 Respostas
- 6984 Exibições
- Última mensagem por admin

Ter Ago 26, 2008 19:02
Cálculo: Limites, Derivadas e Integrais
-
- Área limitada pelas curvas
por Fernandobertolaccini » Qua Jul 23, 2014 22:02
- 0 Respostas
- 1049 Exibições
- Última mensagem por Fernandobertolaccini

Qua Jul 23, 2014 22:02
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.