• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral

Integral

Mensagempor Claudin » Sáb Dez 01, 2012 17:28

Expresse o limite como uma integral

\lim_{k\rightarrow0}\sum_{i=1}^{k}\frac{i^4}{k^5}

Não sei como resolver o exercicio
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Integral

Mensagempor LuizAquino » Ter Dez 11, 2012 16:37

Claudin escreveu:Expresse o limite como uma integral

\lim_{k\rightarrow0}\sum_{i=1}^{k}\frac{i^4}{k^5}

Não sei como resolver o exercicio


Para que esse limite seja representado como uma integral, eu presumo que na verdade ele seria:

\lim_{k\to +\infty} \sum_{i=1}^{k}\frac{i^4}{k^5}

Nesse caso, note que podemos reescrever esse limite como sendo:

\lim_{k\to +\infty} \sum_{i=1}^{k}\left(\frac{i}{k}\right)^4\frac{1}{k}

Considere agora a função f(x) = x^4 no intervalo [0, 1]. Dividindo esse intervalo em k partes iguais, teremos k subintervalos do tipo \left[\frac{i-1}{k},\,\frac{i}{k}\right], com i = 1, 2, 3, ..., k. Além disso, note que cada subintervalo terá o tamanho de 1/k. A figura abaixo ilustra esses subintervalos.

figura.png
figura.png (10.7 KiB) Exibido 1769 vezes


Agora perceba que a expressão \left(\frac{i}{k}\right)^4\frac{1}{k} representa a área do retângulo que tem base no intervalo \left[\frac{i-1}{k},\,\frac{i}{k}\right] e altura igual a \left(\frac{i}{k}\right)^4 (ou seja, podemos dizer que a altura é f\left(\frac{i}{k}\right)) .

No limite, quando k\to+\infty, a soma das áreas de todos os retângulos irá coincidir com a área abaixo do gráfico de f e acima do eixo x no intervalo [0, 1]. Em outras palavras, temos que:

\lim_{k\to +\infty} \sum_{i=1}^{k}\left(\frac{i}{k}\right)^4\frac{1}{k} = \int_0^1 x^4 \, dx
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.