por mih123 » Ter Nov 06, 2012 00:52
Olá, boa noite! Gostaria que me ajudassem nessa questão.
Determine, se a função

verifica a fórmula
![\frac{{(-1)}^{n}n!}{5}\left[ \frac{17}{{(x-2)}^{n+1}}+\frac{13}{{(x+3)}^{n+1}}\right] \frac{{(-1)}^{n}n!}{5}\left[ \frac{17}{{(x-2)}^{n+1}}+\frac{13}{{(x+3)}^{n+1}}\right]](/latexrender/pictures/9544d4e883fb2e45984009e893e9294d.png)
para a sua derivada de ordem n E N.
-
mih123
- Usuário Dedicado

-
- Mensagens: 35
- Registrado em: Seg Ago 27, 2012 03:15
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por Russman » Ter Nov 06, 2012 01:25
Derive 1,2,3,...,n vezes e observe o padrão...
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por e8group » Ter Nov 06, 2012 19:37
Olá , eu tenho uma idéia q possa ajudar vc .
Primeiro , fatorando o denominador e escrevendo-o como ,

. Podemos dizer que ,

.
Em seguida vou decompor as frações por soma parcial . Antes de tudo se você não conhece este metodo , recomendo a leitura do mesmo neste link abaixo :
http://www.math.wisc.edu/~park/Fall2011 ... action.pdfVou afirma que ,

.
Para mantermos a veracidade , cabe acharmos condições sobre

e

que satisfaz a relação acima .
Com isso , segue os passos :
1) Multiplicando ambos lados por

, vamos obter que :

2) Aplicando a distributiva e colocando o termo x em evidência , segue que :

.
3) Para a igualdade ser verdadeira , os coeficientes são iguais , então :
4) Resolvendo este sistema , teremos que :

e

.
Portanto ,
Agora basta você , derivar para

, agora basta desenvolver as derivadas e verificar se condiz com a generalidade proposta e (se vc quiser), mostre que vale para

.
É isso .
Comente qualquer coisa .
EDITADO . Corrigido .
Editado pela última vez por
e8group em Qui Nov 08, 2012 08:58, em um total de 1 vez.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por mih123 » Qui Nov 08, 2012 03:29
Nao conhecia esse método.
Entendi sim, muitoo obrigada!

-
mih123
- Usuário Dedicado

-
- Mensagens: 35
- Registrado em: Seg Ago 27, 2012 03:15
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por mih123 » Qui Nov 08, 2012 05:11
Só que é ao contrário

e

, né?
-
mih123
- Usuário Dedicado

-
- Mensagens: 35
- Registrado em: Seg Ago 27, 2012 03:15
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por e8group » Qui Nov 08, 2012 08:59
Obrigado . Estar editado o erro . Desculpa .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Derivada] Ajuda com calculo de derivada de função quociente
por alienpuke » Dom Out 25, 2015 15:31
- 1 Respostas
- 10492 Exibições
- Última mensagem por Cleyson007

Dom Out 25, 2015 16:47
Cálculo: Limites, Derivadas e Integrais
-
- [derivada] derivada pela definição da secante
por TheKyabu » Sáb Out 27, 2012 23:24
- 2 Respostas
- 10698 Exibições
- Última mensagem por TheKyabu

Dom Out 28, 2012 11:44
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada] Com duas variáveis e derivada mista
por leticiaeverson » Dom Abr 22, 2018 00:39
- 3 Respostas
- 12950 Exibições
- Última mensagem por Gebe

Dom Abr 22, 2018 17:11
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada]derivada de função de raiz cúbica
por armando » Sáb Jul 20, 2013 15:22
- 4 Respostas
- 14566 Exibições
- Última mensagem por armando

Dom Jul 21, 2013 22:17
Cálculo: Limites, Derivadas e Integrais
-
- [DERIVADA] DERIVADA POR DEFINIÇÃO DA RAIZ DO MÓDULO DE X
por Matheusgdp » Qua Set 16, 2015 04:07
- 2 Respostas
- 4961 Exibições
- Última mensagem por Matheusgdp

Qui Set 17, 2015 18:31
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.