• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[INTEGRAL DEFINIDA] Exercício do Enade 2011

[INTEGRAL DEFINIDA] Exercício do Enade 2011

Mensagempor fabriel » Seg Nov 05, 2012 13:49

E ai galera blz. então é dado o exercício ai:

#Considere a função f:R-R definida por
y=f(x)={x}^{4}-{5x}^{2}+4
para cada xeR. A área da região limitada pelo gráfico
da função y=f(x), o eixo Ox e as retas x=0 e x=2
é igual a.

Resolvendo a integral:
\int_{0}^{2}{x}^{4}-{5x}^{2}+4dx

Vamos obter:
\left[\frac{{x}^{5}}{5}-\frac{{5x}^{3}}{3}+4x \right] Avaliado nos pontos 0 e 2. obtemos então: \frac{16}{15}

Mas pelo que vi no gabarito a resposta certa é: \frac{60}{15}

E não entendi o que eu errei..Poderiam me ajudar nessa questão.
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: [INTEGRAL DEFINIDA] Exercício do Enade 2011

Mensagempor MarceloFantini » Seg Nov 05, 2012 15:22

A curva tem uma raíz em x=1 e passa a ser negativa. Normalmente quando integramos esta área é considerada "negativa" pelo fato de estar orientada "negativamente". Para obter o valor absoluto da área sob a curva, integre de 0 a 1 normalmente e depois tome o módulo da integral de 1 a 2. O resultado será como está no gabarito.

Veja aqui o que eu quero dizer.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [INTEGRAL DEFINIDA] Exercício do Enade 2011

Mensagempor fabriel » Seg Nov 05, 2012 16:57

Entendi, muito obrigado!!
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 13 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.