• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada

Derivada

Mensagempor mayconf » Sex Out 26, 2012 16:06

y=tg\sqrt[3]{5-6x}

Sendo: (tg u)\prime = sec{}^{2} u.u\prime

minha professora resolveu assim:

y= tg\sqrt[3]{5-6x}=\left(tg\left(5-6x \right){}^{\frac{1}{2}} \right){}^{3}

y\prime=3\left(tg\left(5-6x \right){}^{\frac{1}{2}} \right){}^{2}.\left(sec{}^{2}\left(5-6x \right){}^{\frac{1}{2}}.\frac{1}{2}\left(5-6x \right){}^{\frac{-1}{2}}\left(-6 \right)\right)

eu num intendi quele menus 6 no fim ali
mayconf
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sex Set 21, 2012 12:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Derivada

Mensagempor MarceloFantini » Sáb Out 27, 2012 08:24

Está errado. Note que \sqrt[3]{5-6x} = (5-6x)^{\frac{1}{3}}, que é diferente de (5-6x)^{\frac{3}{2}} = ((5-6x)^{\frac{1}{2}})^3.

Note que você tem a composição de três funções: f(x) = \tan (x), h(x) = \sqrt[3]{x} e g(x) = 5-6x. A composição é f(h(g(x))), e derivando teremos f'(h(g(x)) \cdot h'(g(x)) \cdot g'(x) pela regra da cadeia. Portanto,

(\tan (\sqrt[3]{5-6x}))' = \sec^2 (\sqrt[3]{5-6x}) \cdot \frac{1}{3} \frac{1}{\sqrt[3]{(5-6x)^2}} \cdot (5-6x)'

= \sec^2 (\sqrt[3]{5-6x}) \cdot \frac{1}{3} \frac{1}{\sqrt[3]{(5-6x)^2}} \cdot (-6).
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.