por menino de ouro » Qua Out 24, 2012 23:10
gostaria de aprender a substituir( u.du) nessa questao:
obs: o (e) que multiplica a raiz do lado de fora está elevando o( x ) e o ,(e ) dentro da raiz esta elevando o (-2x)
![\int \frac{1}{e^x \sqrt[]{1-e^-2x}} dx \int \frac{1}{e^x \sqrt[]{1-e^-2x}} dx](/latexrender/pictures/f9b03e4ca99574f1430229e43364c1c4.png)
usando uma dessas formulas dadas:
![\int \frac{1}{x \sqrt[]{x^2 -a^2}}dx =\frac{1}{a}arcsec \left|\frac{x}{a} \right| +c,\left|x \right|>a \int \frac{1}{x \sqrt[]{x^2 -a^2}}dx =\frac{1}{a}arcsec \left|\frac{x}{a} \right| +c,\left|x \right|>a](/latexrender/pictures/d02a16b28a08e1be2a3a52797edc0676.png)

-
menino de ouro
- Usuário Dedicado

-
- Mensagens: 39
- Registrado em: Ter Out 23, 2012 22:11
- Formação Escolar: GRADUAÇÃO
- Área/Curso: quimica
- Andamento: cursando
por MarceloFantini » Qui Out 25, 2012 01:27
Note que

,
e agora faça

, daí

e

.
Portanto,

.
Agora é só olhar qual é parecida.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Tecnicas de integraçao por substiuiçao simples]
por menino de ouro » Qua Out 24, 2012 16:12
- 1 Respostas
- 1494 Exibições
- Última mensagem por young_jedi

Qua Out 24, 2012 16:51
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Usando método da substituição
por neoreload » Dom Nov 09, 2014 00:36
- 3 Respostas
- 3847 Exibições
- Última mensagem por e8group

Dom Nov 09, 2014 12:57
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] usando método da substituição
por neoreload » Sex Nov 14, 2014 02:43
- 0 Respostas
- 1552 Exibições
- Última mensagem por neoreload

Sex Nov 14, 2014 02:43
Cálculo: Limites, Derivadas e Integrais
-
- Integração Usando Substituição t = tan Teta/2
por cferreira264 » Dom Jul 02, 2017 19:27
- 0 Respostas
- 1407 Exibições
- Última mensagem por cferreira264

Dom Jul 02, 2017 19:27
Cálculo: Limites, Derivadas e Integrais
-
- [integrais usando substituições indicadas]
por Giu » Sáb Fev 11, 2012 14:08
- 1 Respostas
- 1559 Exibições
- Última mensagem por LuizAquino

Sáb Fev 11, 2012 14:21
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.