• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Usando tecnicas de integrais por substituiçao simples]

[Usando tecnicas de integrais por substituiçao simples]

Mensagempor menino de ouro » Qua Out 24, 2012 23:10

gostaria de aprender a substituir( u.du) nessa questao:

obs: o (e) que multiplica a raiz do lado de fora está elevando o( x ) e o ,(e ) dentro da raiz esta elevando o (-2x)

\int \frac{1}{e^x  \sqrt[]{1-e^-2x}}    dx




usando uma dessas formulas dadas:


\int     \frac{1}{\sqrt[]{a^2 -x^2}}dx =arcsen \frac{x}{a} +c,\left|x \right|<a


\int     \frac{1}{x \sqrt[]{x^2 -a^2}}dx =\frac{1}{a}arcsec \left|\frac{x}{a} \right| +c,\left|x \right|>a


\int     \frac{1}{a^2 + x^2}dx = \frac{1}{a} arctg\frac{x}{a}+c
menino de ouro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Out 23, 2012 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: [Usando tecnicas de integrais por substituiçao simples]

Mensagempor MarceloFantini » Qui Out 25, 2012 01:27

Note que

\int \frac{1}{e^x \sqrt{1 - e^{-2x}}} \, dx = \int \frac{e^{-x}}{\sqrt{1-e^{-2x}}} \, dx,

e agora faça u = e^{-x}, daí du = - e^{-x} \, dx e e^{-2x} = (e^{-x})^2 = u^2.

Portanto,

\int \frac{e^{-x}}{\sqrt{1-e^{-2x}}} \, dx = \int \frac{-1}{\sqrt{1-u^2}} \, du.

Agora é só olhar qual é parecida.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.