• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Provando sobre neperiano e ??

Provando sobre neperiano e ??

Mensagempor Questioner » Ter Abr 20, 2010 22:20

Olá!

Há algum tempo eu, durante um exercício, provei que

{e}^{\pi}> {\pi}^{e}

Infelizmente, não consigo provar novamente. Alguém pode me dar uma luz? Não me lembro nem por onde começar...

Agradeço desde já!

Abraços. ;)
Questioner
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Abr 20, 2010 22:13
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Provando sobre neperiano e ??

Mensagempor Elcioschin » Qua Abr 21, 2010 22:06

pi^e ~= 22,459

e^pi ~= 23,140

Que outra prova você quer?
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Provando sobre neperiano e ??

Mensagempor Questioner » Sex Abr 23, 2010 19:26

Por cálculo é possível se determinar que .

Quero saber como essa conclusão foi feita utilizando cálculo. Se eu quisesse só a resposta, uma calculadora bastaria, como você percebeu.
Questioner
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Abr 20, 2010 22:13
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Provando sobre neperiano e ??

Mensagempor Molina » Sex Abr 23, 2010 19:38

Questioner escreveu:Por cálculo é possível se determinar que .

Quero saber como essa conclusão foi feita utilizando cálculo. Se eu quisesse só a resposta, uma calculadora bastaria, como você percebeu.

Boa noite.

Você consegue provar essa sua afirmação?

Acho que você poderia tirar o limite de ambos os lados, com x tendendo a \pi, assim:

\lim_{x\rightarrow \pi}{e}^{x} > \lim_{x\rightarrow \pi}{x}^{e}

Será que é daqui pra frente?

Questão interessante...
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Provando sobre neperiano e ??

Mensagempor MarceloFantini » Sáb Abr 24, 2010 01:13

Agora a questão ficou mais forte, você não quer provar que vale apenas pra pi, mas para qualquer x. Não sei como ajudar, mas fui no wolframalpha dar uma checada e acho que não é para todo x, tem que estabelecer uma restrição.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Provando sobre neperiano e ??

Mensagempor Elcioschin » Sáb Abr 24, 2010 10:07

A curva de e^x é uma exponencial padrão.
A curva de x^e é similar à curva e^x e realmente fica sempre abaixo da primeira.

Eu não conheço a demonstração de que e^x > x^e, mas acredito que ela exista.

Partindo do princípio de que a demonstração existe, ela é deve ser válida para qualquer valor de x, logo deve valer para x = pi, isto é, e^pi > pi^e.

Suponho que a prova deve partir de

Limite (1 + 1/x)^x = e
x-->oo

Limite [(1 + 1/x)^x]^x = e^x -----> Limite (1 + 1/x)^x² = e^x
x-->oo .................................x-->oo
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Provando sobre neperiano e ??

Mensagempor Questioner » Sáb Abr 24, 2010 12:18

Andei pensando, se pensássemos na derivada das curvas criadas, teríamos duas derivadas que nos diriam, pela inclinação, quem é maior - sempre. Então, eu derivei e encontrei:

{e}^{x}
\frac{d({e}^{x})}{dx}={e}^{x}

{x}^{e}
\frac{d({e}^{x})}{dx}= e {x}^{e-1}

Se fizéssemos uma diferença entre as curvas (como um sólido de rotação) e integrássemos (para achar a área sob), creio que encontraríamos a diferença numérica, certo? De - 0,682 (aproximadamente).
Questioner
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Abr 20, 2010 22:13
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Provando sobre neperiano e ??

Mensagempor Questioner » Sáb Abr 24, 2010 12:42

Acho que encontrei a resposta. Vejam se confere, por favor:

Temos que considerar que:
{e}^{\pi}> {\pi}^{e} somente se ln ({e}^{\pi})> ln ({\pi}^{e}), sendo assim:
\pi > e\times ln(\pi)

Isso só será verdade se:

e  < \frac{\pi}{ln(\pi)}

Isso nos leva a

f(x) = \frac{x}{ln(x)}

Isso, numericamente, confere.

Ou mesmo se fizermos ao contrário:

\pi > e\times ln(\pi) e substituirmos numericamente, encontraremos que \pi > 3.112

Será que é isso?
Questioner
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Abr 20, 2010 22:13
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59