por neoreload » Sex Mar 13, 2015 05:11
Pessoal estou perdido nessa questão:
Determine o volume do sólido de revolução gerado pela rotação, em torno do eixo dos x, da região limitada pelas seguintes curvas:
x + y = 8, x = 0, y = 0
Resposta:

Estou bem no inicio da disciplina, se possível colocar o passo de maneira simples, pq fiquei sem entender mesmo. Eu sei que usa a integral multiplicada pelo pi, mas não estou sabendo usar. Estou precisando dessa pra continuar.
-
neoreload
- Usuário Dedicado

-
- Mensagens: 27
- Registrado em: Sáb Ago 09, 2014 16:15
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por Russman » Sex Mar 13, 2015 17:00
Não é difícil.
Se a curva que será girada em torno do eixo

é

então o volume

do sólido gerado entre os extremos

e

é

.
Ou seja, basta que você integre a função ao quadrado e multiplique por pi.
Tenta fazer isso.
Note que o intervalo de integração é
![[0,8] [0,8]](/latexrender/pictures/61464d90bc2ae67b93035582c6e220af.png)
já que no limite

a função

assume o valor para

. Ainda, olhando bem, o sólido gerado será um cone de altura 8 e raio de base

. Daí, da geometria espacial, sabemos que seu volume será

"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Integral] para calcular volume
por neoreload » Sex Nov 21, 2014 05:26
- 1 Respostas
- 4623 Exibições
- Última mensagem por felipederaldino

Qua Nov 26, 2014 11:16
Cálculo: Limites, Derivadas e Integrais
-
- Integral para calcular arco
por neoreload » Sex Mar 20, 2015 07:04
- 2 Respostas
- 3203 Exibições
- Última mensagem por Russman

Seg Mar 23, 2015 01:55
Cálculo: Limites, Derivadas e Integrais
-
- Ajuda para Calcular uma Integral Gaussiana
por Luthius » Qui Jul 12, 2018 09:22
- 0 Respostas
- 4355 Exibições
- Última mensagem por Luthius

Qui Jul 12, 2018 09:22
Cálculo: Limites, Derivadas e Integrais
-
- [Volume] Volume de caixa para carrinho de mão
por MateusDantas1 » Seg Nov 05, 2012 20:12
- 0 Respostas
- 2732 Exibições
- Última mensagem por MateusDantas1

Seg Nov 05, 2012 20:12
Geometria Espacial
-
- Ajuda para resolver equação para calcular velocidade média
por marcorrer » Sex Fev 24, 2012 13:10
- 0 Respostas
- 3703 Exibições
- Última mensagem por marcorrer

Sex Fev 24, 2012 13:10
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.