Determine o volume do sólido de revolução gerado pela rotação, em torno do eixo dos x, da região limitada pelas seguintes curvas:
x + y = 8, x = 0, y = 0
Resposta:

Estou bem no inicio da disciplina, se possível colocar o passo de maneira simples, pq fiquei sem entender mesmo. Eu sei que usa a integral multiplicada pelo pi, mas não estou sabendo usar. Estou precisando dessa pra continuar.

é
então o volume
do sólido gerado entre os extremos
e
é
.
já que no limite
a função
assume o valor para
. Ainda, olhando bem, o sólido gerado será um cone de altura 8 e raio de base
. Daí, da geometria espacial, sabemos que seu volume será 

![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)