por leticiapires52 » Sex Fev 13, 2015 11:20
-
leticiapires52
- Colaborador Voluntário

-
- Mensagens: 100
- Registrado em: Qua Fev 12, 2014 10:12
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
por Baltuilhe » Sex Fev 13, 2015 14:47
Leticia, boa tarde!
Esta função é DESCONTÍNUA, pois:
Limite à esquerda de -2:

Limite à direita de -2:

Portanto:

Então, limites à esquerda e à direita existem e SÃO iguais, portanto, existe o limite.
Mas para a função ser contínua além do limite existir a função deve existir no ponto e possuir MESMO valor que o obtido pelos limites laterais.
No caso a função possui valor no ponto onde x=-2.
Pela definição passada:

Mas como 1 é diferente de 3, a função é DESCONTÍNUA.
Espero ter ajudado!
-
Baltuilhe
- Usuário Parceiro

-
- Mensagens: 60
- Registrado em: Dom Mar 24, 2013 21:16
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- função descontinua
por alexandreredefor » Seg Jul 18, 2011 17:50
- 2 Respostas
- 2723 Exibições
- Última mensagem por LuizAquino

Ter Jul 19, 2011 17:31
Cálculo: Limites, Derivadas e Integrais
-
- Função descontinua alguém pode me ajudar
por Marcia C Silva » Sáb Mai 28, 2016 22:43
- 1 Respostas
- 1791 Exibições
- Última mensagem por nakagumahissao

Dom Mai 29, 2016 22:09
Funções
-
- Explique porque a função é descontínua no numero dado
por Pedro Coin » Sex Mai 27, 2016 23:20
- 1 Respostas
- 2533 Exibições
- Última mensagem por nakagumahissao

Dom Mai 29, 2016 22:10
Cálculo: Limites, Derivadas e Integrais
-
- Função continua
por Amparo » Dom Mar 09, 2008 16:14
- 1 Respostas
- 3829 Exibições
- Última mensagem por admin

Qui Mar 13, 2008 12:52
Funções
-
- função continua
por alexandreredefor » Dom Jul 17, 2011 18:23
- 4 Respostas
- 3006 Exibições
- Última mensagem por Molina

Seg Jul 18, 2011 11:42
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.