por Renan1434 » Ter Dez 16, 2014 16:00
Dada a função

determine:
a) Taxa de variação de f no ponto P=(-2,1,1) na direção do vetor v= (1,-2,3)
b) Taxa máxima de f no ponto P=(-2,1,1) e a direção em que isto ocorre
-
Renan1434
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Seg Dez 15, 2014 23:54
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia civil
- Andamento: cursando
por adauto martins » Qua Dez 17, 2014 15:39
a)

![=(({e}^{yz}),(xy{e}^{yz}+x{e}^{z}).(1/\sqrt[]{14},-2/\sqrt[]{14}) =(({e}^{yz}),(xy{e}^{yz}+x{e}^{z}).(1/\sqrt[]{14},-2/\sqrt[]{14})](/latexrender/pictures/d1b67fd322c615dd2cdb901a6b7d3703.png)
![\Rightarrow (\partial f(-2,1)/\partial z)=({e},-4{e}).(1/\sqrt[]{14},-2/\sqrt[]{14})=e/\sqrt[]{14}+8e/\sqrt[]{14}=9e/\sqrt[]{14} \Rightarrow (\partial f(-2,1)/\partial z)=({e},-4{e}).(1/\sqrt[]{14},-2/\sqrt[]{14})=e/\sqrt[]{14}+8e/\sqrt[]{14}=9e/\sqrt[]{14}](/latexrender/pictures/da963b4d00fc361137cdae2a2f7f0592.png)
b)

...a direçao da taxa maxima sera a direçao do gradiente...
![(\nabla f(x,y)).{u}_{z}=(\partial f/\partial x,\partial f/\partial y).(-2/\sqrt[]{14},1/\sqrt[]{14}) (\nabla f(x,y)).{u}_{z}=(\partial f/\partial x,\partial f/\partial y).(-2/\sqrt[]{14},1/\sqrt[]{14})](/latexrender/pictures/87f630b9f6efd06e76a47b4a05d34587.png)
...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Derivada direcional
por barbara-rabello » Seg Out 15, 2012 20:40
- 9 Respostas
- 5397 Exibições
- Última mensagem por barbara-rabello

Qui Out 18, 2012 12:03
Cálculo: Limites, Derivadas e Integrais
-
- Derivada Direcional
por bruuno » Seg Nov 25, 2013 16:45
- 1 Respostas
- 1695 Exibições
- Última mensagem por Bravim

Ter Nov 26, 2013 03:20
Cálculo: Limites, Derivadas e Integrais
-
- Derivada direcional
por Jadiel Carlos » Seg Nov 21, 2016 11:14
- 2 Respostas
- 5747 Exibições
- Última mensagem por Jadiel Carlos

Qui Nov 24, 2016 01:16
Cálculo: Limites, Derivadas e Integrais
-
- [Gradiente e derivada direcional]
por dulifs » Seg Out 31, 2011 15:22
- 2 Respostas
- 4761 Exibições
- Última mensagem por dulifs

Seg Out 31, 2011 18:14
Cálculo: Limites, Derivadas e Integrais
-
- Questão de derivada direcional e gradiente
por Cristiano Tavares » Dom Mai 29, 2011 11:25
- 2 Respostas
- 3692 Exibições
- Última mensagem por Cristiano Tavares

Dom Mai 29, 2011 19:35
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.