• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada de segunda ordem

Derivada de segunda ordem

Mensagempor Maou » Qua Dez 03, 2014 13:45

Olá tudo bom, a partir desta função y(x) = (x+1)?(1-x) derivando eu chego em y'(x) = ?(1-x)+1/2(x+1)1/?(1-x) mas quando vou derivar novamente y''(x) estou me perdendo no meio dos cálculos e esta ficando cada vez maior poderiam me ajudar.

Desde já agradeço.
Maou
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Dez 03, 2014 13:32
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Derivada de segunda ordem

Mensagempor adauto martins » Qua Dez 03, 2014 15:09

y=(x+1)\sqrt[]{1-x}....,vamos usar a derivada do produto,ou seja...(f.g)'=f'.g+fg'...logo...
y'=\sqrt[]{1-x}+(x+1)(1/2)(-1/\sqrt[]{1-x})=\sqrt[]{1-x}-(x+1/2.\sqrt[]{1-x})...
y'=(1-x)-(x+1)/(2.\sqrt[]{1-x})=-2x/(2.\sqrt[]{1-x})=-x/(\sqrt[]{1-x})...aqui agora e usar a derivada do quociente,ou seja...(f/g)'=(f'g-fg' )/{g}^{2},entao...y''=((-1).\sqrt[]{1-x}-(-x).(1/2)(-1/\sqrt[]{1-x}))/({\sqrt[]{1-x}})^{2}=-\sqrt[]{1-x}-x/(2.\sqrt[]{1-x}).(1-x))=-2.({1-x})^{2}-x/(2.\sqrt[]{({1-x})^{3}})=-2(1-2x+{x}^{2})-x/(2.\sqrt[]{({1-x})^{3}})\Rightarrow y''=-{x}^{2}+x-2/(\sqrt[]{({1-x})^{3}})
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Derivada de segunda ordem

Mensagempor lucas_carvalho » Qua Dez 03, 2014 15:12

Olá!
Para derivar funções desse tipo precisamos da regra da multiplicação:
[f(x)g(x)]' = f'(x)g(x)+g'(x)f(x)
Então:
y' =[x+1]' . \sqrt[]{1-x} + (x+1). [\sqrt[]{x-1}]'
y'=\sqrt[]{1-x} - \frac{x+1}{2\sqrt[]{1-x}}
Agora é só calcular a segunda derivada, lembrado que a derivada de uma subtração é igual a subtração das derivadas:
y''= [\sqrt[]{1-x}]' -[\frac{x+1}{2\sqrt[]{1-x}}]'
y'' = -\frac{1}{2\sqrt[]{1-x}} - \frac{1}{2}. \frac{\sqrt[]{1-x}+\frac{x+1}{2\sqrt[]{1-x}}}{1-x}
y'' = -\frac{1}{2\sqrt[]{1-x}}- \frac{3-x}{4\sqrt[]{(1-x)^3}}

Espero ter ajudado!
lucas_carvalho
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Ter Dez 02, 2014 20:17
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia química
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}