• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral] para calculo da área

[Integral] para calculo da área

Mensagempor neoreload » Qua Nov 19, 2014 23:18

Pessoal, como resolve essa:

Calcule a area da região limitada pelas curvas y=x^{2} e y=\sqrt{x}.

Eu tentei fazer colocando o x^{2}=\sqrt{x}. Sei que é simples, mas meio que esqueci :( . O que faz a partir dai? e no caso eu não tenho a resposta, ai não sei como fazer e nem se estaria chegando no resultado certo. Agradeço quem puder deixar o passo a passo.
neoreload
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 27
Registrado em: Sáb Ago 09, 2014 16:15
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Integral] para calculo da área

Mensagempor adauto martins » Qui Nov 20, 2014 10:39

primeiramente achar a regiao,no caso x\succ 0,o ponto onde as curvas se igulam ou seja {x}^{2}=\sqrt[]{x}...logo teremos {x}^{4}-x=0,cujas raizes serao x=0,x=1(raiz de multiplicidade 3)...no intervalo [0,1]
\sqrt[]{x}\succ {x}^{2}\Rightarrow A=\int_{0}^{1}(\sqrt[]{x}-{x}^{2})dx...
A=\int_{0}^{1}({x}^{1/2})dx-\int_{0}^{1}({x}^{2})dx=(2/3){x}^{3/2}-(1/3){x}^{3}[0,1]=(2/3)-(1/3)=1/3
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.