• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivadas] Derivadas com definição de limites

[Derivadas] Derivadas com definição de limites

Mensagempor concurseironf » Sex Set 05, 2014 18:11

Não entendi muito bem como utilizar esta definição dentro destas funções.

Alguém pode me ajudar a me dar uma luz por favor?
Anexos
6 - Derivadas.jpg
concurseironf
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Ago 21, 2014 12:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Informática
Andamento: cursando

Re: [Derivadas] Derivadas com definição de limites

Mensagempor DanielFerreira » Dom Set 07, 2014 22:18

Olá concurseironf,
seja bem-vindo!

Para encontrar a derivada de uma função pela definição (dada), basta substituir... Veja:

a)

Temos que f(x) = \frac{1}{x - 2}, então f(x + h) = \frac{1}{(x + h - 2)}.

Segue que,

\\ f'(x) = \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h} \\\\\\ f'(x) = \lim_{h \rightarrow 0} \frac{\frac{1}{x + h - 2} - \frac{1}{x - 2}}{h} \\\\\\ f'(x) = \lim_{h \rightarrow 0} \frac{\frac{1 \cdot (x - 2) - 1 \cdot (x + h - 2)}{(x + h - 2)(x - 2)}}{h} \\\\\\ f'(x) = \lim_{h \rightarrow 0} \frac{x - 2 - x - h + 2}{(x + h - 2)(x - 2)} \times \frac{1}{h} \\\\\\ f'(x) = \lim_{h \rightarrow 0} \frac{\cancel{x} - \cancel{2} - \cancel{x} - h + \cancel{2}}{h(x + h - 2)(x - 2)} \\\\\\ f'(x) = \lim_{h \rightarrow 0} \frac{- h}{h(x + h - 2)(x - 2)} \\\\\\ f'(x) = \lim_{h \rightarrow 0} \frac{- \cancel{h}}{\cancel{h}(x + h - 2)(x - 2)} \\\\\\ f'(x) = \lim_{h \rightarrow 0} \frac{- 1}{(x + h - 2)(x - 2)} \\\\\\ f'(x) = \frac{- 1}{(x + 0 - 2)(x - 2)} \\\\\\ \boxed{f'(x) = \frac{- 1}{(x - 2)^2}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)