• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Como calcular limites de funções com seno?

Como calcular limites de funções com seno?

Mensagempor starlord » Sáb Ago 23, 2014 19:30

Olá, queria ajuda pra calcular esse limite cabeludo que veio na minha primeira lista de cálculo hehe em anexo a foto do limite.
Anexos
Capturar.JPG
starlord
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Ago 23, 2014 19:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Computação
Andamento: cursando

Re: Como calcular limites de funções com seno?

Mensagempor adauto martins » Qui Out 23, 2014 18:07

{x}^{2}-6x+9={(x-3)}^{2},tg(1/(x-3))=-tg(x-3),pois tg1\simeq0...logo:
L=\lim_{x\rightarrow3}({x}^{2}-9)cos(({(x-3)}^{1/7}/({(x-3})^{2/5})-tg(x-3))
L=\lim_{x\rightarrow3}(x+3)(x-3)cos((\sqrt[7]{x-3})/(\sqrt[5]({{x-3})^{2}})-tg(x-3)),
(cos((\sqrt[7]{x-3})/(\sqrt[5]({{x-3})^{2}})-tg(x-3)))cos((1/(\sqrt[35]({{x-3})^{11}})-tg(x-3))...
o argumento do cosx,e um termo muito grande q. tende ao infinito,logo o maior valor q. o cosx pode assumir e 1,entao:
L=\lim_{x\rightarrow3}(x+3)(x-3)=0
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Como calcular limites de funções com seno?

Mensagempor adauto martins » Qui Out 23, 2014 23:11

eita,mais uma correçao...
o argumento de cosx se torna infinito,devido ao radical (R=1/(\sqrt[35]{({x-3})^{11}}),logo cos(R-tg(x-3))=0...
fato esse q. se pode calcular fazendo cos(R+tg(x-3))...obrigado
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59