por tadeumartines » Qui Ago 07, 2014 17:28
Dois corredores, um de largura 'a' e o outro de largura 'b', formam uma esquina em ângulo reto. Deseja-se arrastar uma
barra metálica pesada de espessura desprezível, sem que ela saia do chão, de um corredor para o outro. Qual o maior tamanho da barra?
Não tenho ideia por onde começar.
-
tadeumartines
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qui Ago 07, 2014 17:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharel em Ciência da Computação
- Andamento: cursando
por adauto martins » Dom Out 26, 2014 16:25
prim.vou provar um resultado e usa-lo na soluçao do exercicio...
em um triangulo retangulo de area maxima,seus cateos sao de igual medida...


...como
a area e maxima entao:dA/d

=

=0

...logo o triangulo retangulo e isosceles...CQP...
agora a soluçao do exercicio...
considere a barra como:inicia-se de um ponto do corredor"a",q.passa pelo ponto interno da esquina e toca um ponto no corredor"b",extremidade da barra...logo ,construem-se dois triangulos retangulos,onde os angulos retos sao os pontos de inicio e extremidade da barra ,q. tocam os pontos de partida e chegada,dos corredores(espero q. entendam,e facil desenhe ai e verao)...para o prim.triangulo,corredor "a",teremos x,q. e a medida q. vai do ponto do corredor ate o ponto de esquina,entao...
![sen(\pi/4)=a/x,a e o comprim. do cateo do triangulo do corredor "a"...logo x=\sqrt[2]{2}.a sen(\pi/4)=a/x,a e o comprim. do cateo do triangulo do corredor "a"...logo x=\sqrt[2]{2}.a](/latexrender/pictures/2255dd286c25ea93a3d99339b468b922.png)
...o mesmo raciocinio se faz com o outro tringulo...o compr.total da barra sera
![L=\sqrt[2]{2}(a+b) L=\sqrt[2]{2}(a+b)](/latexrender/pictures/de52592998966711a44e90f22d66ec05.png)
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por adauto martins » Seg Out 27, 2014 14:03
caros colegas do site,
a soluçao apresentada por mim nesse exercicio esta errada...
usei o fato da area maxima para triangulos retangulos,q. no caso,a hipotenusa p/ triangulos retangulos de area maxima tem seu valor minimo(fato bom p/se provar)...me esforçarei p/resolve-lo,no mais muito obrigado...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por adauto martins » Ter Out 28, 2014 10:34
bom,vamos a soluçao correta desse exercicio;colocarei aqui de forma sucinta,considerando os pontos mais importantes,e deixo a cargo dos colegas os algebrismo q. conduzem a resposta...
considerando,como antes descrito,a barra tem o ponto de partida do corredor "a",passa pelo ponto interno da quina e vai ate o corredor"b"...podemos tomar ai 2 triang.retangulos,cujas hipotenusas dao o comprimento da barra;vamos tomar a barra em funçao do angulo q. os triangulos fazem com a horizontal,no caso do corredor "a",sera a parede interna,no caso do corredor "b"sera o comprim. do corredor...entao:

...tomamos a dL/d

=asec

tg

-bcossec

cotg

=0

a

...tomando, cos

=
![\sqrt[]{1-({sen\theta}^{2})} \sqrt[]{1-({sen\theta}^{2})}](/latexrender/pictures/5a98ee06bbb9ce733174e73d477203e0.png)

,entao
![\Rightarrow a{sen\theta}^{3}=b({\sqrt[]{1-({sen\theta})^{2}}})^{3}\Rightarrow {sen\theta}^{2}(\sqrt[3]{({a/b})^{2}})+1)=1\Rightarrow {sen\theta}^{2}=1/((\sqrt[3]{({a/b})^{2}})+1) \Rightarrow a{sen\theta}^{3}=b({\sqrt[]{1-({sen\theta})^{2}}})^{3}\Rightarrow {sen\theta}^{2}(\sqrt[3]{({a/b})^{2}})+1)=1\Rightarrow {sen\theta}^{2}=1/((\sqrt[3]{({a/b})^{2}})+1)](/latexrender/pictures/af5e7674ec602b1ac522eed64322f314.png)
,voltando em

=(a/cos

)+(b/sen

)=(
![(a/\sqrt[]{1-{sen\theta}^{2}})+(b/(sen\theta})) (a/\sqrt[]{1-{sen\theta}^{2}})+(b/(sen\theta}))](/latexrender/pictures/c0e2868088ed28ed029e019fed7f8755.png)
=(
![a/\sqrt[3]{{a/b}})+(b/(\sqrt[2]{1+{\sqrt[3]({a/b}})^{2}})) a/\sqrt[3]{{a/b}})+(b/(\sqrt[2]{1+{\sqrt[3]({a/b}})^{2}}))](/latexrender/pictures/d2c1994c8e164a7c3674597ed728158e.png)
,faz.k=
![\sqrt[3]{a/b} \sqrt[3]{a/b}](/latexrender/pictures/12e844cc1b6555d6a93c6ed081e7d09a.png)
,teremos...L=(a/k)+b(1/((1+

),resolvendo os algebrismos e etc...,chegamos em L=
![\sqrt[3]{({a}^{2/3}+{b}^{2/3})^2} \sqrt[3]{({a}^{2/3}+{b}^{2/3})^2}](/latexrender/pictures/a72712791ab69c98dc2d8a889596cebe.png)
,q. e a resposta certa,a qual conferi no livro de calculo(um curso universitario),edwie moise,o q. realmente me animou a resolver esse exercicio...voltando em

,tomando

,caso do nosso triang.retangulo isosceles de hipotenusa minima L=
![\sqrt[]{2}(a+b) \sqrt[]{2}(a+b)](/latexrender/pictures/4050a8a54c3c725d1d9de8efedc79bd9.png)
,q. seria o comprim. minimo p/ L...minha resposta anterior...ujaaaaaa....
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Otimização]Maior área de um retângulo
por frank1 » Qua Mai 23, 2012 03:29
- 8 Respostas
- 17147 Exibições
- Última mensagem por adauto martins

Qui Jun 06, 2019 12:59
Cálculo: Limites, Derivadas e Integrais
-
- Maior entre dois numeros
por TiagoRodrigues » Qui Mar 01, 2012 14:37
- 5 Respostas
- 3621 Exibições
- Última mensagem por TiagoRodrigues

Sex Mar 02, 2012 11:18
Sistemas de Equações
-
- [DERIVADA- Dúvida exercício de otimização
por gabifzm » Qua Out 23, 2013 16:14
- 0 Respostas
- 1052 Exibições
- Última mensagem por gabifzm

Qua Out 23, 2013 16:14
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] - Centro de Massa da barra
por klueger » Sex Mar 22, 2013 17:07
- 1 Respostas
- 3499 Exibições
- Última mensagem por young_jedi

Sáb Mar 23, 2013 16:53
Cálculo: Limites, Derivadas e Integrais
-
- DÚVIDA EXERCÍCIO Distância entre pontos
por Danilo » Seg Abr 16, 2012 02:39
- 6 Respostas
- 9034 Exibições
- Última mensagem por LuizAquino

Ter Abr 17, 2012 11:23
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.