por natanaelskt » Qua Jul 16, 2014 02:04
Dúvida sobre se posso fazer isso.

esse limite é quando x tende a zero pela direita 0+
assim eu poderia aplicar hopital só em

? e depois de achado o valor somar com lim sec^3x?
-
natanaelskt
- Usuário Dedicado

-
- Mensagens: 32
- Registrado em: Seg Mar 11, 2013 15:06
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por e8group » Qua Jul 16, 2014 10:56
Sim , mas tome cuidado. O mais correto é computar cada limite separadamente e verificar se eles existem , caso sim ,o próximo passo é aplicar a regra operacional "Limite da soma " .
Em geral não faça isso

. (Exceto se é fácil ver que os limites existem ) , proceda assim ...
Compute os limites separadamente

.
Assim , se o primeiro(segundo) limite existir e valer

então pela regra operacional temos

.
Observação : Estar implícito que

são números reais , entretanto suponha que um deles sejam não números reais e sim

então

. Além disso , se ambos

forem

e

então

é possível mostrar isto formalmente . A teoria aq não está mt boa , recomendo que consulte livros .
Façamos o mesmo para o exercício ...

( o limite lateral existe )

(Não importa o " caminho " que seguirmos para computar o limite , importante é computar-ló corretamente )

.
Agora ,

e

, logo

.
Ou por L'hospital o resultado também segue [revise as contas !] (aplicando uma vez a regra teremos no numerador um monômio x que vai a zero e no denominador um termo sin^2 x que também vai a zero , então aplicamos novamente a regra a qual eliminará a indeterminação o resultado seguirá )
Logo recaímos em um dos casos em que um dos L_i vale + infinito então o limite requerido vale + \infinito .
Ou outra forma de ver é que

sempre que

(para algum r > 0 pequeno fixado ) isto nos leva a concluir que

e com isso ganhamos a desigualdade (claramente verdadeira )

.
Entretanto , sabemos que

quando

, ou seja

e o resultado segue .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por natanaelskt » Qui Jul 17, 2014 01:27
valeu santhiago. entendi perfeitamente.
-
natanaelskt
- Usuário Dedicado

-
- Mensagens: 32
- Registrado em: Seg Mar 11, 2013 15:06
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dúvida teórica.
por neilendrigo » Sex Mai 16, 2008 23:55
- 2 Respostas
- 2640 Exibições
- Última mensagem por neilendrigo

Sáb Mai 17, 2008 13:16
Geometria Plana
-
- Duvida teorica (funçao exponencial)
por Fabricio dalla » Qui Abr 07, 2011 01:56
- 2 Respostas
- 1552 Exibições
- Última mensagem por MarceloFantini

Qui Abr 07, 2011 19:06
Funções
-
- [integração por partes] Dúvida teórica
por natanaelskt » Qui Jul 17, 2014 03:00
- 1 Respostas
- 1448 Exibições
- Última mensagem por e8group

Qui Jul 17, 2014 10:03
Cálculo: Limites, Derivadas e Integrais
-
- [Estruturas Algébricas] Subconjuntos - Dúvida Teórica
por Pessoa Estranha » Seg Mar 10, 2014 19:51
- 1 Respostas
- 1443 Exibições
- Última mensagem por adauto martins

Sáb Dez 06, 2014 13:10
Álgebra Elementar
-
- Domínio - Teórica
por raimundoocjr » Ter Abr 23, 2013 20:35
- 1 Respostas
- 875 Exibições
- Última mensagem por ant_dii

Qua Abr 24, 2013 14:32
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.