por felipeek » Seg Jun 02, 2014 21:08
Suponha uma função de duas variáveis F(x,y).
Eu queria saber, precisamente, a diferença entre derivar esta função parcialmente e "não parcialmente" em relação a x, por exemplo.
Ou seja, a diferença entre:

e

É sabido que:

A partir deste resultado, me vem a ideia que quando fazemos

estamos levando em conta que y depende de x, ou algo do tipo. E quando fazemos

parece que y não depende de x ou que ignoramos este fato.
Se alguém pudesse me dar uma ajudada a entender melhor a diferença destas duas derivadas, ia me ajudar muito!
Valeu

@edit: Queria deixar claro que o meu problema não é o cálculo destas derivadas, e sim entender a diferença teórica entre elas!
-
felipeek
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sex Mar 01, 2013 18:58
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Engenharia de Computação
- Andamento: cursando
por Russman » Seg Jun 02, 2014 21:37
Você está no caminho certo! Sua observação é bastante pertinente. Mas...
No caso em que y e x são variáveis independentes (isto é, os valores que uma pode assumir não depende dos valores que a outra pode assumir) de uma função F(x,y) as derivadas total e parcial com relação a mesma variável se confundem. Ou seja, acabam calculando a mesma função. O que não é verdade no caso contrário.
Esta confusão é mero resultado do significado de derivação parcial. De fato, o que você está fazendo ao operar uma função de duas ou mais variáveis com a derivação parcial é derivá-la com relação a uma de suas variáveis tomando todas as outras constantes. Se a função depende de duas variáveis e você a deriva parcialmente com relação a uma delas é o mesmo que seccionar a superfície definida por essa função e estudar a secção no ponto de vista da variável de derivação.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por felipeek » Seg Jun 02, 2014 22:04
Russman escreveu:Você está no caminho certo! Sua observação é bastante pertinente. Mas...
No caso em que y e x são variáveis independentes (isto é, os valores que uma pode assumir não depende dos valores que a outra pode assumir) de uma função F(x,y) as derivadas total e parcial com relação a mesma variável se confundem. Ou seja, acabam calculando a mesma função. O que não é verdade no caso contrário.
Esta confusão é mero resultado do significado de derivação parcial. De fato, o que você está fazendo ao operar uma função de duas ou mais variáveis com a derivação parcial é derivá-la com relação a uma de suas variáveis tomando todas as outras constantes. Se a função depende de duas variáveis e você a deriva parcialmente com relação a uma delas é o mesmo que seccionar a superfície definida por essa função e estudar a secção no ponto de vista da variável de derivação.
Valeu Russman, isso ajudou bastante! Ainda tenho algumas dúvidas
Russman escreveu:Se a função depende de duas variáveis e você a deriva parcialmente com relação a uma delas é o mesmo que seccionar a superfície definida por essa função e estudar a secção no ponto de vista da variável de derivação.
Vamos supor que eu derive uma função F(x,y) parcialmente em relação a
x, por exemplo, e obtenha uma nova função que dependa de ambos
x e
y. Neste caso, qual seria o sentido de y neste resultado? Seria y uma variável que simplesmente determina qual a "secção" que eu desejo "estudar", digamos assim? Por exemplo, ao tomar y=2, a função F'(x,2) mostraria a variação da variável x na secção de z e x com y fixado em 2. É por aí?
Outra pergunta, qual seria então o sentido da derivada
total de F com relação a x?
Valeu!
@edit: pensei um pouco: Se y for função de x, a
derivada total de F seria então simplesmente a taxa de variação de x com relação a F? Pois como y depende de x, era como se F fosse uma função de uma só variável
-
felipeek
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sex Mar 01, 2013 18:58
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Engenharia de Computação
- Andamento: cursando
por Russman » Seg Jun 02, 2014 22:21
felipeek escreveu:Vamos supor que eu derive uma função F(x,y) parcialmente em relação a x, por exemplo, e obtenha uma nova função que dependa de ambos x e y. Neste caso, qual seria o sentido de y neste resultado? Seria y uma variável que simplesmente determina qual a "secção" que eu desejo "estudar", digamos assim? Por exemplo, ao tomar y=2, a função F'(x,2) mostraria a variação da variável x na secção de z e x com y fixado em 2. É por aí?
Exatamente. Por exemplo, considere a função

. Ao tomar a derivada parcial desta função com relação a x você obtém uma nova função

dada por

A função obtida é uma
família de funções lineares
em x, no sentido de que as inclinações são dependentes de y como facilmente se vê.
Note que se ao invés de trabalharmos com

variável e o substituíssemos por uma valor constante, por exemplo,

teríamos

de onde

que exemplifica bem a tecnologia da derivação parcial.
felipeek escreveu:Outra pergunta, qual seria então o sentido da derivada total de F com relação a x?
A derivação total considera não só a dependência
explícita de uma certa variável na função de interesse como a
implícita. Suponha que você esteja estudando uma função

onde

. Ou seja, a variável

esta parametrizada. Desta forma a própria função F varia com o parâmetro

de modo que a derivada total calcula exatamente como se dá esta variação.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por felipeek » Ter Jun 03, 2014 12:25
Russman escreveu:A derivação total considera não só a dependência
explícita de uma certa variável na função de interesse como a
implícita. Suponha que você esteja estudando uma função

onde

. Ou seja, a variável

esta parametrizada. Desta forma a própria função F varia com o parâmetro

de modo que a derivada total calcula exatamente como se dá esta variação.
Pode se dizer então que, de uma maneira bem geral, o uso da
derivação total em funções de duas ou mais variáveis é útil quando as variáveis independentes desta função tem alguma
relação entre si ou com alguma outra variável? Relações diretas entre elas, como por exemplo F(x, y(x)) ou mesmo parametrizações como você destacou
-
felipeek
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sex Mar 01, 2013 18:58
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Engenharia de Computação
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Diferença entre os produto escalar.
por 380625 » Seg Ago 15, 2011 19:43
- 1 Respostas
- 1657 Exibições
- Última mensagem por LuizAquino

Seg Ago 15, 2011 21:32
Geometria Analítica
-
- [Limites] Qual a diferença entre limite que não existe e...
por morena » Sex Mar 22, 2013 08:22
- 3 Respostas
- 2956 Exibições
- Última mensagem por Russman

Sex Mar 22, 2013 21:49
Cálculo: Limites, Derivadas e Integrais
-
- [Distribuição normal] com normal reduzida e tabela, dúvida
por MarciaChiquete » Sáb Set 17, 2016 20:38
- 0 Respostas
- 8271 Exibições
- Última mensagem por MarciaChiquete

Sáb Set 17, 2016 20:38
Estatística
-
- [Derivada Parcial de 1ª Ordem] - Derivada parcial num ponto
por Vitor2+ » Dom Jul 01, 2012 16:27
- 6 Respostas
- 4559 Exibições
- Última mensagem por e8group

Seg Jul 02, 2012 10:56
Cálculo: Limites, Derivadas e Integrais
-
- Derivação - derivação logarítmica
por teer4 » Ter Mai 21, 2013 12:11
- 0 Respostas
- 2061 Exibições
- Última mensagem por teer4

Ter Mai 21, 2013 12:11
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.