• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[DERIVAÇÃO] Diferença entre normal e parcial

[DERIVAÇÃO] Diferença entre normal e parcial

Mensagempor felipeek » Seg Jun 02, 2014 21:08

Suponha uma função de duas variáveis F(x,y).

Eu queria saber, precisamente, a diferença entre derivar esta função parcialmente e "não parcialmente" em relação a x, por exemplo.

Ou seja, a diferença entre:

\frac{\mathrm dF}{\mathrm dx} e \frac{\partial F}{\partial x}

É sabido que:

\frac{\mathrm dF}{\mathrm dx} = \frac{\partial F}{\partial x}\frac{\mathrm dx}{\mathrm dx} + \frac{\partial F}{\partial y}\frac{\mathrm dy}{\mathrm dx} = \frac{\partial F}{\partial x} + \frac{\partial F}{\partial y}\frac{\mathrm dy}{\mathrm dx}

A partir deste resultado, me vem a ideia que quando fazemos \frac{\mathrm dF}{\mathrm dx} estamos levando em conta que y depende de x, ou algo do tipo. E quando fazemos \frac{\partial F}{\partial x} parece que y não depende de x ou que ignoramos este fato.

Se alguém pudesse me dar uma ajudada a entender melhor a diferença destas duas derivadas, ia me ajudar muito!

Valeu :y:

@edit: Queria deixar claro que o meu problema não é o cálculo destas derivadas, e sim entender a diferença teórica entre elas!
felipeek
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Mar 01, 2013 18:58
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia de Computação
Andamento: cursando

Re: [DERIVAÇÃO] Diferença entre normal e parcial

Mensagempor Russman » Seg Jun 02, 2014 21:37

Você está no caminho certo! Sua observação é bastante pertinente. Mas...

No caso em que y e x são variáveis independentes (isto é, os valores que uma pode assumir não depende dos valores que a outra pode assumir) de uma função F(x,y) as derivadas total e parcial com relação a mesma variável se confundem. Ou seja, acabam calculando a mesma função. O que não é verdade no caso contrário.

Esta confusão é mero resultado do significado de derivação parcial. De fato, o que você está fazendo ao operar uma função de duas ou mais variáveis com a derivação parcial é derivá-la com relação a uma de suas variáveis tomando todas as outras constantes. Se a função depende de duas variáveis e você a deriva parcialmente com relação a uma delas é o mesmo que seccionar a superfície definida por essa função e estudar a secção no ponto de vista da variável de derivação.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [DERIVAÇÃO] Diferença entre normal e parcial

Mensagempor felipeek » Seg Jun 02, 2014 22:04

Russman escreveu:Você está no caminho certo! Sua observação é bastante pertinente. Mas...

No caso em que y e x são variáveis independentes (isto é, os valores que uma pode assumir não depende dos valores que a outra pode assumir) de uma função F(x,y) as derivadas total e parcial com relação a mesma variável se confundem. Ou seja, acabam calculando a mesma função. O que não é verdade no caso contrário.

Esta confusão é mero resultado do significado de derivação parcial. De fato, o que você está fazendo ao operar uma função de duas ou mais variáveis com a derivação parcial é derivá-la com relação a uma de suas variáveis tomando todas as outras constantes. Se a função depende de duas variáveis e você a deriva parcialmente com relação a uma delas é o mesmo que seccionar a superfície definida por essa função e estudar a secção no ponto de vista da variável de derivação.


Valeu Russman, isso ajudou bastante! Ainda tenho algumas dúvidas

Russman escreveu:Se a função depende de duas variáveis e você a deriva parcialmente com relação a uma delas é o mesmo que seccionar a superfície definida por essa função e estudar a secção no ponto de vista da variável de derivação.


Vamos supor que eu derive uma função F(x,y) parcialmente em relação a x, por exemplo, e obtenha uma nova função que dependa de ambos x e y. Neste caso, qual seria o sentido de y neste resultado? Seria y uma variável que simplesmente determina qual a "secção" que eu desejo "estudar", digamos assim? Por exemplo, ao tomar y=2, a função F'(x,2) mostraria a variação da variável x na secção de z e x com y fixado em 2. É por aí?

Outra pergunta, qual seria então o sentido da derivada total de F com relação a x?

Valeu!

@edit: pensei um pouco: Se y for função de x, a derivada total de F seria então simplesmente a taxa de variação de x com relação a F? Pois como y depende de x, era como se F fosse uma função de uma só variável
felipeek
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Mar 01, 2013 18:58
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia de Computação
Andamento: cursando

Re: [DERIVAÇÃO] Diferença entre normal e parcial

Mensagempor Russman » Seg Jun 02, 2014 22:21

felipeek escreveu:Vamos supor que eu derive uma função F(x,y) parcialmente em relação a x, por exemplo, e obtenha uma nova função que dependa de ambos x e y. Neste caso, qual seria o sentido de y neste resultado? Seria y uma variável que simplesmente determina qual a "secção" que eu desejo "estudar", digamos assim? Por exemplo, ao tomar y=2, a função F'(x,2) mostraria a variação da variável x na secção de z e x com y fixado em 2. É por aí?


Exatamente. Por exemplo, considere a função F(x,y) = yx^2 + x. Ao tomar a derivada parcial desta função com relação a x você obtém uma nova função F_x(x,y) dada por

F_x(x,y) = 2yx + 1

A função obtida é uma família de funções lineares em x, no sentido de que as inclinações são dependentes de y como facilmente se vê.

Note que se ao invés de trabalharmos com y variável e o substituíssemos por uma valor constante, por exemplo, a teríamos

f(x) = ax^2 + x

de onde

\frac{\mathrm{d} }{\mathrm{d} x} f(x) = 2ax + 1

que exemplifica bem a tecnologia da derivação parcial.

felipeek escreveu:Outra pergunta, qual seria então o sentido da derivada total de F com relação a x?


A derivação total considera não só a dependência explícita de uma certa variável na função de interesse como a implícita. Suponha que você esteja estudando uma função F(x,y) onde y=y(t). Ou seja, a variável y esta parametrizada. Desta forma a própria função F varia com o parâmetro t de modo que a derivada total calcula exatamente como se dá esta variação.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [DERIVAÇÃO] Diferença entre normal e parcial

Mensagempor felipeek » Ter Jun 03, 2014 12:25

Russman escreveu:A derivação total considera não só a dependência explícita de uma certa variável na função de interesse como a implícita. Suponha que você esteja estudando uma função F(x,y) onde y=y(t). Ou seja, a variável y esta parametrizada. Desta forma a própria função F varia com o parâmetro t de modo que a derivada total calcula exatamente como se dá esta variação.


Pode se dizer então que, de uma maneira bem geral, o uso da derivação total em funções de duas ou mais variáveis é útil quando as variáveis independentes desta função tem alguma relação entre si ou com alguma outra variável? Relações diretas entre elas, como por exemplo F(x, y(x)) ou mesmo parametrizações como você destacou
felipeek
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Mar 01, 2013 18:58
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia de Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.