• Anúncio Global
    Respostas
    Exibições
    Última mensagem

integral

integral

Mensagempor ilane » Seg Abr 28, 2014 11:04

\int_(x+1) sen x dx gente achei a seguinte resposta

[tex] sen(x) dx = - cos (x)+ c[\tex]
usando a forma alternativa da integral
[tex]-\frac{1}{2}{e}^{-1x} - \frac{e^1x}{2} +c[\tex]
gostaria de saber se usando essa formula a resposta está correta e se existe outra formula para chegar ao resultado.
ilane
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Ter Abr 08, 2014 10:53
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: integral

Mensagempor alienante » Ter Abr 29, 2014 16:04

\int_{}^{}usin(u)du=-ucos(u)-\int_{}^{}(-cos(u))du=-ucos(u)+sin(u)+cSe voce chamar u=x+1\rightarrow du=dx logo\int_{}^{}(x+1)sin(x)dx=\int_{}^{}usin(u)du.Por integração por partes \int_{}^{}adb=ab-\int_{}^{}bda,irei chamar a=u e db=sin(u)du.Comoa=u\rightarrow da=du e db=sin(u)du\rightarrow\int_{}^{}db=\int_{}^{}sin(u)du\rightarrow b=-cos(u)+c, Logo(irei ignorar a constante).Voltando para a variavel x temos que :\int_{}^{}(x+1)sin(x)dx=-(x+1)cos(x+1)+sin(x+1)+c
alienante
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 43
Registrado em: Seg Nov 25, 2013 19:18
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}