• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites] Seja f: R -> R responda:

[Limites] Seja f: R -> R responda:

Mensagempor yuricastilho » Qui Abr 10, 2014 00:15

b) Se \[\lim_{x \rightarrow 0} \frac{f(x)}{x} = 0\], qual o \[\lim_{x \rightarrow 0} f(x)\] ?

c)Se \[\lim_{x \rightarrow + \infty } \frac{f(x)}{x^2 + x} = +\infty\] qual o \[\lim_{x \rightarrow + \infty } f(x)\]

Se alguém puder me ajudar nesses dois por favor...
yuricastilho
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sáb Abr 05, 2014 19:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: [Limites] Seja f: R -> R responda:

Mensagempor e8group » Sáb Abr 12, 2014 01:04

A ideia geral é \pm essa

Se \lim_{x\to c } \frac{g(x)}{h(x)} = k calcule \lim_{x\to c} g(x) .

Um raciocínio utilizando uma das regras operatórias \lim_{x\to c}  g(x) =  \lim_{x\to c}  \left( \frac{g(x)}{h(x)}\right) \cdot h(x) =   \lim_{x\to c}  \left( \frac{g(x)}{h(x)}\right) \cdot \lim_{x\to c} h(x)  = k \cdot  \lim_{x\to c} h(x) . Em seguida ,calcule separadamente o limite da função h .

P.S.: c e k podem ser números bem como \pm \infty .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Limites] Seja f: R -> R responda:

Mensagempor yuricastilho » Ter Abr 15, 2014 14:31

Obrigado Santhiago, consegui fazer agora.
yuricastilho
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sáb Abr 05, 2014 19:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.