• Anúncio Global
    Respostas
    Exibições
    Última mensagem

CÁLCULO DE LIMITE COM RAIZES DE ÍNDICES DIFERENTES

CÁLCULO DE LIMITE COM RAIZES DE ÍNDICES DIFERENTES

Mensagempor thiago15_2 » Qui Fev 27, 2014 01:20

Galera, estou com uma duvida grande aqui.
Não tenho prática para escrever as fórmulas mais vai dar pra entender.

A questão é essa:


lim (raizcúbica de 8x-8) + (raizquarta de 16x²+16) -4/(raizquadrada de 4x²+4) -2
x->0

Obs(sem usar derivada)

Meu professor faz a mudança de variável tirando o mmc dos índices. Eu só sei fazer quando dentro da raiz só tem o x. quando tem o x², ou um polinômio, já não sei fazer.

A resposta é 7/6. queria saber mesmo como fica essa mudança de variável.
GRATO.
thiago15_2
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Fev 27, 2014 01:05
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia civil
Andamento: cursando

Re: CÁLCULO DE LIMITE COM RAIZES DE ÍNDICES DIFERENTES

Mensagempor young_jedi » Sex Fev 28, 2014 15:15

imagino que o limite seja esse

\lim_{x\to0}\frac{\sqrt[3]{8x+8}+\sqrt[4]{16x^2+16}-4}{\sqrt{4x^2+4}-2}

podemos simplificar um pouco

\lim_{x\to0}\frac{2\sqrt[3]{x+1}+2\sqrt[4]{x^2+1}-4}{2\sqrt{x^2+1}-2}

\lim_{x\to0}\frac{\sqrt[3]{x+1}+\sqrt[4]{x^2+1}-2}{\sqrt{x^2+1}-1}


a mudança de variavel que que eu proponho é esta

\sqrt[12]{x+1}=y

x\to0
y\to1

então o limite ficaria

\lim_{y\to1}\frac{y^4+y^3-2}{y^6-1}

\lim_{y\to1}\frac{(y-1)(y^3+2y^2+2y+2)}{(y-1)(y^5+y^4+y^3+y^2+y+1)}

\lim_{y\to1}\frac{\cancel{(y-1)}(y^3+2y^2+2y+2)}{\cancel{(y-1)}(y^5+y^4+y^3+y^2+y+1)}

\lim_{y\to1}\frac{y^3+2y^2+2y+2}{y^5+y^4+y^3+y^2+y+1}=\frac{7}{6}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}