• Anúncio Global
    Respostas
    Exibições
    Última mensagem

CÁLCULO DE LIMITE COM RAIZES DE ÍNDICES DIFERENTES

CÁLCULO DE LIMITE COM RAIZES DE ÍNDICES DIFERENTES

Mensagempor thiago15_2 » Qui Fev 27, 2014 01:20

Galera, estou com uma duvida grande aqui.
Não tenho prática para escrever as fórmulas mais vai dar pra entender.

A questão é essa:


lim (raizcúbica de 8x-8) + (raizquarta de 16x²+16) -4/(raizquadrada de 4x²+4) -2
x->0

Obs(sem usar derivada)

Meu professor faz a mudança de variável tirando o mmc dos índices. Eu só sei fazer quando dentro da raiz só tem o x. quando tem o x², ou um polinômio, já não sei fazer.

A resposta é 7/6. queria saber mesmo como fica essa mudança de variável.
GRATO.
thiago15_2
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Fev 27, 2014 01:05
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia civil
Andamento: cursando

Re: CÁLCULO DE LIMITE COM RAIZES DE ÍNDICES DIFERENTES

Mensagempor young_jedi » Sex Fev 28, 2014 15:15

imagino que o limite seja esse

\lim_{x\to0}\frac{\sqrt[3]{8x+8}+\sqrt[4]{16x^2+16}-4}{\sqrt{4x^2+4}-2}

podemos simplificar um pouco

\lim_{x\to0}\frac{2\sqrt[3]{x+1}+2\sqrt[4]{x^2+1}-4}{2\sqrt{x^2+1}-2}

\lim_{x\to0}\frac{\sqrt[3]{x+1}+\sqrt[4]{x^2+1}-2}{\sqrt{x^2+1}-1}


a mudança de variavel que que eu proponho é esta

\sqrt[12]{x+1}=y

x\to0
y\to1

então o limite ficaria

\lim_{y\to1}\frac{y^4+y^3-2}{y^6-1}

\lim_{y\to1}\frac{(y-1)(y^3+2y^2+2y+2)}{(y-1)(y^5+y^4+y^3+y^2+y+1)}

\lim_{y\to1}\frac{\cancel{(y-1)}(y^3+2y^2+2y+2)}{\cancel{(y-1)}(y^5+y^4+y^3+y^2+y+1)}

\lim_{y\to1}\frac{y^3+2y^2+2y+2}{y^5+y^4+y^3+y^2+y+1}=\frac{7}{6}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.