Sei que posso encontrar a área do conjunto de integração B através da integral dupla da função constante f(x,y) = 1, assim:

mas como calcular a área compreendida entre essas curvas?
Quer dizer, como transformo a área entre elas no meu conjunto B?
Pensei em fazer a interseção delas, para ver onde se encontram.. fiz isso:

ou 
assim, vai estar variando em [-2,1] em x.
e y variando entre as funções,

e

só que então, preciso descobrir qual curva está 'abaixo' e qual está 'em cima'.
para isso, peguei um valor entre x pertencente a ]-2,1[. por exemplo, x = 0
assim,

e

logo, varia em y, entre (nessa ordem)

e

e aí, ficaria mais ou menos assim o cálculo dessa área:

é isso mesmo, galera?
e se estiver correto, o que acharam da minha 'metodologia'? há um modo mais direto? o que vocês mudariam?
obrigado pela ajuda e aguardo sua resposta!!

pela de
. Mas, já que vem a integral no exercício, você pode aplicá-la( como você fez) e perceber que os cálculos são s mesmo.
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.