por edilaine33 » Dom Dez 01, 2013 08:54
calcular a área da função calculo integral.
- Anexos
-

-
edilaine33
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Sáb Nov 30, 2013 14:14
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em quimica
- Andamento: cursando
por Pessoa Estranha » Dom Dez 01, 2013 10:13
Olá !

Encontrar a primitiva:

Fazer: primitiva avaliada de
![[1,3] [1,3]](/latexrender/pictures/689e1b934020b6eb3917c155d94a9a0f.png)
;
![\int_{1}^{3}\frac{1}{{x}^{2}} = - ({3)}^{-1} - [-({1)}^{-1}] = -\frac{1}{3} + 1 = \frac{-1 + 3}{3} = \frac{2}{3} \int_{1}^{3}\frac{1}{{x}^{2}} = - ({3)}^{-1} - [-({1)}^{-1}] = -\frac{1}{3} + 1 = \frac{-1 + 3}{3} = \frac{2}{3}](/latexrender/pictures/53332eff84b404687042383404450bfa.png)
.
Certo?
Como você tentou fazer?
-
Pessoa Estranha
- Colaborador Voluntário

-
- Mensagens: 262
- Registrado em: Ter Jul 16, 2013 16:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Calcular Área no Gráfico através de uma Função
por joedsonazevedo » Qui Nov 15, 2012 11:11
- 1 Respostas
- 1625 Exibições
- Última mensagem por e8group

Qui Nov 15, 2012 14:07
Funções
-
- Calcular área
por Anakinrj » Ter Nov 23, 2010 21:33
- 8 Respostas
- 5441 Exibições
- Última mensagem por Moura

Ter Dez 14, 2010 06:58
Cálculo: Limites, Derivadas e Integrais
-
- Calcular área
por Anakinrj » Qua Nov 24, 2010 12:11
- 2 Respostas
- 2167 Exibições
- Última mensagem por Moura

Ter Dez 14, 2010 07:44
Cálculo: Limites, Derivadas e Integrais
-
- Calcular área
por pedcoi » Qui Fev 02, 2012 11:19
- 2 Respostas
- 1864 Exibições
- Última mensagem por pedcoi

Sex Fev 03, 2012 14:03
Cálculo: Limites, Derivadas e Integrais
-
- Calcular unidades de área?
por natanlp » Qua Fev 01, 2012 00:45
- 9 Respostas
- 5310 Exibições
- Última mensagem por Arkanus Darondra

Qua Fev 01, 2012 15:34
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.