• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integrais por substituição trigonométrica

Integrais por substituição trigonométrica

Mensagempor Victor Mello » Seg Nov 11, 2013 23:13

Galera, eu estava tentando integrar \int\frac{dx}{\sqrt[]{4x^2-49}} e tudo estava dando certo. Usei x=7sec\theta e sec\theta=\frac{x}{7} (para servir de referência para o final da resolução). Derivei o x=7sec\theta e substitui o dx. Aí ficou assim:

\int\frac{7sec\theta tg\theta d\theta}{\sqrt[]{196sec^2\theta-49}}

\int\frac{7sec\theta tg\theta d\theta}{\sqrt[]{49(4sec^2\theta-1)}}

\int\frac{7sec\theta tg\theta d\theta}{\sqrt[]{49}*\sqrt[]{4sec^2\theta-1}}

\int\frac{sec\theta tg\theta d\theta}{\sqrt[]{4sec^2\theta-1}} = OBS: eu tinha cancelado o 7 como termo unitário por causa da raíz quadrada de 49

A partir daqui virou outro problema: eu preciso agora de uma outra substituição e chamei o sec\theta = u e derivei ela para subistituir o sec\theta tg\theta d\theta = du e assim ficou:

\int\frac{du}{\sqrt[]{4u^2-1}} e fatorei o 4u^2-1

\int\frac{du}{\sqrt[]{(2u-1)(2u+1)}} =

\int\frac{du}{\sqrt[]{2u-1}\sqrt[]{2u+1}} =

\int\frac{du}{\sqrt[]{2u-1}} *\frac{1}{\sqrt[]{2u+1}} =

E parei aqui. Não tem como mais integrar pela substituição simples e muito menos por partes por causa da raíz do denominador na integral antes de eu fazer por substituição simples. Alguém poderia sugerir qual a substituição mais adequada depois da trigonométrica? Por muito pouco eu não consegui integrar *-)

Bom, espero que vocês tenham compreendido o meu raciocínio e se puderem me ajudar, eu agradeço ;)

Obrigado.
Victor Mello
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Nov 03, 2013 17:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da computação.
Andamento: cursando

Re: Integrais por substituição trigonométrica

Mensagempor e8group » Ter Nov 12, 2013 20:55

Atenção com a identidade sec^2 \theta = 1 + tan^2 \theta o que implica sec^2 \theta - 1  = tan^2\theta . Agora note \sqrt{4x^2 - 49} = \sqrt{49(\frac{4}{49}x^2 -1)} = 7 \sqrt{ \left(\frac{2}{7}x\right)^2 - 1} . Faça uma comparação deste resultado com a outra relação .Qual substituição deve tomar de modo escrever \left(\frac{2}{7}x\right)^2 - 1 como sec^2 \theta - 1 ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Integrais por substituição trigonométrica

Mensagempor Victor Mello » Ter Nov 12, 2013 22:43

Já tinha percebido isso antes de você comentar rsrsrsrsrs, sempre esqueço de um detalhe que faz toda a diferença, não sei como. Agora não posso mais esquecer. :-D
Victor Mello
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Nov 03, 2013 17:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da computação.
Andamento: cursando

Re: Integrais por substituição trigonométrica

Mensagempor Victor Mello » Ter Nov 12, 2013 23:32

Já consegui aqui agora. Obrigado pelo detalhe. :-D
Victor Mello
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Nov 03, 2013 17:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da computação.
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.