• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[derivadas] - dúvida: função quociente entre seno e arcotang

[derivadas] - dúvida: função quociente entre seno e arcotang

Mensagempor EnGENheiro_nota10 » Qui Set 26, 2013 21:22

Ola, sou novo aqui e gostaria de postar uma dúvida que não encontrei:
in: Guidorizzi, L.H - Derivadas; cap.7, pág.223, exercício 8.3, item 1:

y= sen(3x)/arc tang(4x)

Tentei fazer pela regra do quociente e por substituição de variável porém não consegui.
Podem me ajudar?
EnGENheiro_nota10
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Set 26, 2013 20:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [derivadas] - dúvida: função quociente entre seno e arco

Mensagempor Taka » Dom Nov 03, 2013 08:38

Nesse exercício deve-se usar a regra do quociente combinada com a regra da cadeia, se você não viu a regra da cadeia não irá conseguir fazer essa questão
Taka
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Nov 02, 2013 16:33
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Química
Andamento: cursando

Re: [derivadas] - dúvida: função quociente entre seno e arco

Mensagempor Taka » Dom Nov 03, 2013 08:49

Nesse exercício deve-se usar a regra do quociente combinada com a regra da cadeia, se você não viu a regra da cadeia não irá conseguir fazer essa questão.

Mas, mesmo assim, ai vai minha resolução
\frac{d\frac{sen(3x)}{arctg(4x)}}{dx} =
= \frac{\frac{d(sen(3x))}{dx}arctg(4x)-\frac{d(arctg(4x))}{dx}sen(3x)}{{arctg(4x)}^{2}}
= \frac{3cos(3x)arctg(4x)-\frac{4sen(3x)}{1+16{x}^{2}}}{{arctg(4x)}^{2}}
Taka
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Nov 02, 2013 16:33
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Química
Andamento: cursando

Re: [derivadas] - dúvida: função quociente entre seno e arco

Mensagempor EnGENheiro_nota10 » Dom Nov 03, 2013 11:17

Sim, consegui resolver com a ajuda do plantonista.Ele fez exatamente isso.
Então, é isso o que eu tentei fazer, regra da cadeia, que é substituição de variável (+ou- né? Enfim).
O que ficou confuso foi como derivar o que estava dentro e o que estava fora. *-)
Mas muito obrigado!
EnGENheiro_nota10
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Set 26, 2013 20:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.