• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida sobre este limite

Dúvida sobre este limite

Mensagempor duduscs » Dom Set 22, 2013 21:10

Olá pessoal, sou novo no fórum e vim porque necessito de ajuda em uma questão, pois não estou conseguindo resolver.

\lim_{x\rightarrow 0} x^{3}+\sqrt{x} +( 1/x^{2})

e também este:

\lim_{x\rightarrow 1} (x^{4}-1)/(1-x^{2})

Obrigado.
duduscs
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Set 22, 2013 21:03
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. De Computação
Andamento: cursando

Re: Dúvida sobre este limite

Mensagempor Sobreira » Seg Set 23, 2013 12:25

Note que no primeiro exemplo você terá uma indeterminação do tipo \frac{x\neq0}{0}, portanto você irá obter como resposta uma função tendendo a \infty.
Você pode verificar se a função tende a +\infty ou -\infty, através dos limites laterais, mas como {x}^{2}, logo por qualquer lado será positivo e a resposta será +\infty.
No segundo exemplo há uma indeterminação do tipo \frac{0}{0}, portanto você deve utilizar alguma técnica (fatoração por exemplo) para eliminar a indeterminação:

\lim_{x\rightarrow1}\frac{\left({x}^{2}-1 \right)\left({x}^{2} +1\right)}{\left(1-{x}^{2} \right)}

\lim_{x\rightarrow1}\frac{-\left(-{x}^{2}+1 \right)\left({x}^{2} +1\right)}{\left(1-{x}^{2} \right)}

-\left({x}^{2} +1\right)=-2
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado

Re: Dúvida sobre este limite

Mensagempor duduscs » Seg Set 23, 2013 13:08

Sobreira escreveu:Note que no primeiro exemplo você terá uma indeterminação do tipo \frac{x\neq0}{0}, portanto você irá obter como resposta uma função tendendo a \infty.
Você pode verificar se a função tende a +\infty ou -\infty, através dos limites laterais, mas como {x}^{2}, logo por qualquer lado será positivo e a resposta será +\infty.
No segundo exemplo há uma indeterminação do tipo \frac{0}{0}, portanto você deve utilizar alguma técnica (fatoração por exemplo) para eliminar a indeterminação:

\lim_{x\rightarrow1}\frac{\left({x}^{2}-1 \right)\left({x}^{2} +1\right)}{\left(1-{x}^{2} \right)}

\lim_{x\rightarrow1}\frac{-\left(-{x}^{2}+1 \right)\left({x}^{2} +1\right)}{\left(1-{x}^{2} \right)}

-\left({x}^{2} +1\right)=-2



O segundo exemplo eu entendi.

Mas em relação ao primeiro, não haverá limite, correto? Pois se analisar o limite pela direita, ele tenderá ao +infinito, porém, se analisar pela esquerda, ou seja, valores menores que zero, e consequentemente negativos, não haverá limite lateral devido à \sqrt{x}?
duduscs
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Set 22, 2013 21:03
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. De Computação
Andamento: cursando

Re: Dúvida sobre este limite

Mensagempor Sobreira » Ter Set 24, 2013 01:47

Então...acabei analisando rápido e nem prestei atenção à raíz, então neste caso, mesmo pela esquerda e sendo negativo eu elevaria ao quadrado e obteria infinito positivo. Mas sua observação é pertinente, o limite não existe pela esquerda devido à raíz.
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}