por duduscs » Dom Set 22, 2013 21:10
Olá pessoal, sou novo no fórum e vim porque necessito de ajuda em uma questão, pois não estou conseguindo resolver.

e também este:

Obrigado.
-
duduscs
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Dom Set 22, 2013 21:03
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. De Computação
- Andamento: cursando
por Sobreira » Seg Set 23, 2013 12:25
Note que no primeiro exemplo você terá uma indeterminação do tipo

, portanto você irá obter como resposta uma função tendendo a

.
Você pode verificar se a função tende a +

ou -

, através dos limites laterais, mas como

, logo por qualquer lado será positivo e a resposta será +

.
No segundo exemplo há uma indeterminação do tipo

, portanto você deve utilizar alguma técnica (fatoração por exemplo) para eliminar a indeterminação:



"The good thing about science is that it's true whether or not you believe in it."
-
Sobreira
- Colaborador Voluntário

-
- Mensagens: 122
- Registrado em: Sex Out 12, 2012 17:33
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: formado
por duduscs » Seg Set 23, 2013 13:08
Sobreira escreveu:Note que no primeiro exemplo você terá uma indeterminação do tipo

, portanto você irá obter como resposta uma função tendendo a

.
Você pode verificar se a função tende a +

ou -

, através dos limites laterais, mas como

, logo por qualquer lado será positivo e a resposta será +

.
No segundo exemplo há uma indeterminação do tipo

, portanto você deve utilizar alguma técnica (fatoração por exemplo) para eliminar a indeterminação:



O segundo exemplo eu entendi.
Mas em relação ao primeiro, não haverá limite, correto? Pois se analisar o limite pela direita, ele tenderá ao +infinito, porém, se analisar pela esquerda, ou seja, valores menores que zero, e consequentemente negativos, não haverá limite lateral devido à

?
-
duduscs
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Dom Set 22, 2013 21:03
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. De Computação
- Andamento: cursando
por Sobreira » Ter Set 24, 2013 01:47
Então...acabei analisando rápido e nem prestei atenção à raíz, então neste caso, mesmo pela esquerda e sendo negativo eu elevaria ao quadrado e obteria infinito positivo. Mas sua observação é pertinente, o limite não existe pela esquerda devido à raíz.
"The good thing about science is that it's true whether or not you believe in it."
-
Sobreira
- Colaborador Voluntário

-
- Mensagens: 122
- Registrado em: Sex Out 12, 2012 17:33
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite trigonométrico] Como calculo este limite?
por Ronaldobb » Qua Nov 07, 2012 23:14
- 3 Respostas
- 4842 Exibições
- Última mensagem por Ronaldobb

Qui Nov 08, 2012 07:37
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] - Dúvida sobre o resultado de um limite
por Paulo Souza » Dom Ago 25, 2013 20:57
- 0 Respostas
- 1571 Exibições
- Última mensagem por Paulo Souza

Dom Ago 25, 2013 20:57
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE] Dúvida sobre provar pela definição
por Icaro1931 » Qui Mai 23, 2013 22:14
- 1 Respostas
- 1395 Exibições
- Última mensagem por e8group

Sex Mai 24, 2013 08:59
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] Como calcular este limite?
por alienpuke » Qui Out 01, 2015 11:18
- 1 Respostas
- 1836 Exibições
- Última mensagem por nakagumahissao

Qui Out 01, 2015 23:59
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] Como calcular este limite?
por alienpuke » Qua Set 30, 2015 23:32
- 1 Respostas
- 1875 Exibições
- Última mensagem por nakagumahissao

Sex Out 02, 2015 00:05
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.