por Diego Silva » Ter Jun 18, 2013 21:17
![\lim_{\ x\to8}\frac{3\sqrt[3]{x}-6)}{x-8} \lim_{\ x\to8}\frac{3\sqrt[3]{x}-6)}{x-8}](/latexrender/pictures/dcfcb71301e124c88a5479dde522cf1b.png)
tentei fazer mas não consegui, parece ser simples mas não peguei a logica
-
Diego Silva
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Ter Jun 11, 2013 18:22
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Engenharia Química
- Andamento: cursando
por temujin » Ter Jun 18, 2013 23:16
Essa é uma indeterminação

, então vc pode aplicar l'Hospital:
![\lim_{x \to 8} \frac{3 \sqrt[3]{x}-6}{x-8}=\lim_{x \to 8}\frac{3.\frac{1}{3}.\frac{1}{x^{2/3}}}{1}=\lim_{x \to 8} \frac{1}{x^{2/3}}=\frac{1}{4} \lim_{x \to 8} \frac{3 \sqrt[3]{x}-6}{x-8}=\lim_{x \to 8}\frac{3.\frac{1}{3}.\frac{1}{x^{2/3}}}{1}=\lim_{x \to 8} \frac{1}{x^{2/3}}=\frac{1}{4}](/latexrender/pictures/0b5eced673047b55d228379f164cef59.png)
-
temujin
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Qui Mar 14, 2013 15:11
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Economia
- Andamento: formado
por Diego Silva » Qua Jun 19, 2013 21:00
temujin escreveu:Essa é uma indeterminação

, então vc pode aplicar l'Hospital:
![\lim_{x \to 8} \frac{3 \sqrt[3]{x}-6}{x-8}=\lim_{x \to 8}\frac{3.\frac{1}{3}.\frac{1}{x^{2/3}}}{1}=\lim_{x \to 8} \frac{1}{x^{2/3}}=\frac{1}{4} \lim_{x \to 8} \frac{3 \sqrt[3]{x}-6}{x-8}=\lim_{x \to 8}\frac{3.\frac{1}{3}.\frac{1}{x^{2/3}}}{1}=\lim_{x \to 8} \frac{1}{x^{2/3}}=\frac{1}{4}](/latexrender/pictures/0b5eced673047b55d228379f164cef59.png)
estou em limite ainda não sei L'Hospital tem outra forma, mesmo que seja mais trabalhosa?
-
Diego Silva
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Ter Jun 11, 2013 18:22
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Engenharia Química
- Andamento: cursando
por temujin » Qua Jun 19, 2013 22:33
Aí vc precisaria encontrar alguma forma de fatorar, mas agora eu não consigo ver nenhuma...
Se mais alguém souber, por favor se manifeste.

-
temujin
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Qui Mar 14, 2013 15:11
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Economia
- Andamento: formado
por e8group » Qua Jun 19, 2013 23:13
Podemos deixar em evidência o número 3 , e ainda usando propriedades operatórias de limites ,obtemos :
![\lim_{x\to 8} \frac{3\sqrt[3]{x} -6}{x-8} = 3 \lim_{x\to 8} \frac{\sqrt[3]{x} -2}{x-8} \lim_{x\to 8} \frac{3\sqrt[3]{x} -6}{x-8} = 3 \lim_{x\to 8} \frac{\sqrt[3]{x} -2}{x-8}](/latexrender/pictures/d0b4924bd368e3942006ef4247732ea0.png)
.
Mas ,
![x - 8 = (\sqrt[3]{x})^3 - 2^3 = (\sqrt[3]{x} - 2)((\sqrt[3]{x})^2 + 2\sqrt[3]{x} + 4) x - 8 = (\sqrt[3]{x})^3 - 2^3 = (\sqrt[3]{x} - 2)((\sqrt[3]{x})^2 + 2\sqrt[3]{x} + 4)](/latexrender/pictures/755a976603bb7917ab7f3cc7e418650c.png)
.
Assim ,
![\lim_{x\to 8} \frac{3\sqrt[3]{x} -6}{x-8} = 3 \lim_{x\to 8} \frac{\sqrt[3]{x} -2}{(\sqrt[3]{x} - 2)((\sqrt[3]{x})^2 + 2\sqrt[3]{x} + 4)} \lim_{x\to 8} \frac{3\sqrt[3]{x} -6}{x-8} = 3 \lim_{x\to 8} \frac{\sqrt[3]{x} -2}{(\sqrt[3]{x} - 2)((\sqrt[3]{x})^2 + 2\sqrt[3]{x} + 4)}](/latexrender/pictures/e0002c4ecacd360b4a85b90bbbc7e982.png)
.
Agora tente concluir .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite trigonométrico] Como calculo este limite?
por Ronaldobb » Qua Nov 07, 2012 23:14
- 3 Respostas
- 4842 Exibições
- Última mensagem por Ronaldobb

Qui Nov 08, 2012 07:37
Cálculo: Limites, Derivadas e Integrais
-
- limite.como calculo esse limite?
por jeffinps » Ter Mar 12, 2013 12:07
- 1 Respostas
- 2133 Exibições
- Última mensagem por Douglas16

Ter Mar 12, 2013 14:27
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] AJUDA Calculo de Limite
por will94 » Ter Mai 22, 2012 20:32
- 1 Respostas
- 2104 Exibições
- Última mensagem por LuizAquino

Qua Mai 23, 2012 11:46
Cálculo: Limites, Derivadas e Integrais
-
- [Cálculo de Limite] Resolução de um limite
por julianocoutinho » Seg Mai 13, 2013 01:47
- 3 Respostas
- 3156 Exibições
- Última mensagem por Man Utd

Qua Mai 15, 2013 22:26
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] calculo de limite trigonométrico
por PRADO » Dom Mai 22, 2016 17:01
- 2 Respostas
- 5450 Exibições
- Última mensagem por PRADO

Sex Jun 03, 2016 23:25
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.