por Man Utd » Sáb Jun 15, 2013 11:03
é certo afirmar que as raízes de uma função modular se tornam bicos(pontos que não tem derivada),já que o gráfico é rebatido para cima?
nesta função |x^{3}-x| (vide o gráfico:
http://www.wolframalpha.com/input/?i=ab ... 83%29-x%29 todas as raízes encontram-se bicos).
mais nesta outra função |x^{3}-x^{2}-2x|(gráfico:
http://www.wolframalpha.com/input/?i=ab ... 2%29-2x%29 )não acontecem com todas as raízes e somente uma.
Dúvida:eu tenho que fazer o gráfico para descobrir os possíveis bicos?ou existe um jeito mais eficaz?
-
Man Utd
- Colaborador Voluntário

-
- Mensagens: 155
- Registrado em: Qua Abr 03, 2013 09:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
por e8group » Sáb Jun 15, 2013 13:24
Man Utd escreveu:é certo afirmar que as raízes de uma função modular se tornam bicos(pontos que não tem derivada),já que o gráfico é rebatido para cima?
nesta função |x^{3}-x| (vide o gráfico:
http://www.wolframalpha.com/input/?i=ab ... 83%29-x%29 todas as raízes encontram-se bicos).
A função não é diferenciável nestes pontos ,segue de imediato da definição ,pois as derivadas laterias diferem .
SIm , em uma destas raízes ,as derivadas laterias são iguais o que implica a função diferenciável neste ponto .
Man Utd escreveu:Dúvida:eu tenho que fazer o gráfico para descobrir os possíveis bicos?ou existe um jeito mais eficaz?
Tome cuidado ,esta analise leva você dizer que as funções cujo gráfico não apresenta "bicos " é diferenciável ,isto não é verdade , por exemplo ,
![f(x) = \sqrt[3]{x} f(x) = \sqrt[3]{x}](/latexrender/pictures/ac64ffeed293f17398e36ce96a633821.png)
não é derivável em x= 0 , o limite das retas tangente a função neste ponto é o próprio

, o coeficiente angular desta reta vai

quado

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Man Utd » Sáb Jun 15, 2013 20:10
eu tenho um exercicio assim:
Construa uma função f: R-R que seja contínua em R e derivavél em todos os pontos exceto em -1,0 e 1.
a resolução apresentada a mim foi:
(x+1).x.(x-1)----decomposição de polinomios.
x^{3}-x, então foi colocado em módulo------|x^{3}-x|,com isso as raízes apresentaram bicos na função(conforme wolfram na 1° postagem).
dúvida:Isso sempre é válido?digo uma função em módulo não vai ter derivada nos pontos que são as raízes?
att,
obrigado pela atenção.
-
Man Utd
- Colaborador Voluntário

-
- Mensagens: 155
- Registrado em: Qua Abr 03, 2013 09:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
por e8group » Sáb Jun 15, 2013 21:26
Você também pode pensar em 3 funções contínuas em toda a reta satisfazendo a (*) diferenciabilidade em todos os pontos exceto -1,0,1 . Logo , a soma destas funções contínuas fornecerá uma função contínua satisfazendo (*) .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Man Utd » Dom Jun 16, 2013 10:25
vlw santhiago.

-
Man Utd
- Colaborador Voluntário

-
- Mensagens: 155
- Registrado em: Qua Abr 03, 2013 09:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
por LuizAquino » Dom Jun 16, 2013 11:24
Man Utd escreveu:é certo afirmar que as raízes de uma função modular se tornam bicos(pontos que não tem derivada),já que o gráfico é rebatido para cima?
Nem sempre é correto afirmar isso.
Por exemplo, x = 0 é uma raiz da função definida por

, entretanto a função não tem bico em x = 0. Analise o gráfico desta função representado abaixo.

- figura1.png (8.93 KiB) Exibido 7242 vezes
Errado. Na função definida por

temos bicos em todas as raízes. Para verificar isso, confira os limites abaixo (o cálculo deles fica como exercício para você):






Veja também o gráfico desta função representado abaixo.

- figura2.png (11.88 KiB) Exibido 7242 vezes
Man Utd escreveu:Dúvida:eu tenho que fazer o gráfico para descobrir os possíveis bicos? ou existe um jeito mais eficaz?
Você pode calcular a derivada da função e analisar onde ela é descontínua. Entretanto, dependendo do caso é mais simples construir logo o gráfico.
Man Utd escreveu:eu tenho um exercicio assim:
Construa uma função f: R-R que seja contínua em R e derivavél em todos os pontos exceto em -1,0 e 1.
a resolução apresentada a mim foi:
(x+1).x.(x-1)----decomposição de polinomios.
x^{3}-x, então foi colocado em módulo------|x^{3}-x|,com isso as raízes apresentaram bicos na função(conforme wolfram na 1° postagem).
dúvida:Isso sempre é válido?digo uma função em módulo não vai ter derivada nos pontos que são as raízes?
att,
Nem sempre isso é válido, como ilustra o exemplo exibido no início deste texto.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Derivada de uma função modular
por Man Utd » Dom Jul 14, 2013 23:45
- 5 Respostas
- 14811 Exibições
- Última mensagem por Man Utd

Seg Jul 15, 2013 23:55
Cálculo: Limites, Derivadas e Integrais
-
- Função Modular - dúvida
por jamiel » Qui Abr 28, 2011 13:11
- 18 Respostas
- 14790 Exibições
- Última mensagem por jamiel

Qui Mai 05, 2011 14:08
Funções
-
- Função modular - Dúvida
por Danilo » Dom Mar 10, 2013 15:50
- 1 Respostas
- 1379 Exibições
- Última mensagem por e8group

Dom Mar 10, 2013 16:49
Funções
-
- [Função modular] Dúvida com relação a raízes
por exburro » Sáb Mar 31, 2012 01:23
- 1 Respostas
- 2421 Exibições
- Última mensagem por LuizAquino

Sex Abr 06, 2012 12:40
Funções
-
- [inequação modular] DÚVIDA SIMPLES EM INEQUAÇÃO MODULAR
por brunocunha2008 » Sex Set 13, 2013 22:37
- 1 Respostas
- 7035 Exibições
- Última mensagem por Rafael Henrique

Qui Jan 03, 2019 14:39
Inequações
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.