por leocastilho » Qua Jun 12, 2013 12:35
Olá pessoal, estou com um problema aqui que não consigo resolver.
O velocimetro de um automóvel registra a velocidade de 50km/h quando ele passa por um marco quilométrico ao longo da rodovia. Quatro minutos mais tarde, quando o automóvel passa por um segundo marco a 5 Km do primeiro, o velocimetro registra 55Km/h. Use o teorema do valor médio para provar que a velocidade excedeu a 70 Km/h em alguns instântes enquanto o automovel percorria a distância entre os dois marcos.
Primeiramente eu tentei criar um gráfico do tempo em função da velocidade e apliquei na fórmula do valor médio
f '(c) = f(b) - f(a)/ b - a
quando o tempo é 4 a velocidade é 55, logo f(4) = 55
quando o tempo é 0 a velocidade é 50, logo f(0)= 50
f '(c) = 55 - 50 / 4 - 0
f '(c) = 5/4
Apartir deste ponto já não sei o que posso fazer =/. Outro problema é que não sei aonde posso usar a distância de 5 Km entre os marcos.
Obrigado desde já.
-
leocastilho
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qua Jun 12, 2013 12:12
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
por e8group » Qua Jun 12, 2013 22:40
Vamos tentar ,considere a função

na variável

que fornece a posição do automóvel .Suponha que no instante

,tem-se

para algum

e

,mas sabemos que após 4 min ,

com

(pois

) .Mas ,pelo TVM , existe algum

em

tal que ,

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Calculo velocidade instantanea
por marcomac78 » Qui Nov 08, 2012 23:36
- 1 Respostas
- 1703 Exibições
- Última mensagem por MarceloFantini

Sex Nov 09, 2012 00:31
Cálculo: Limites, Derivadas e Integrais
-
- velocidade instantânea a partir do limite
por MundiTec » Sex Mar 21, 2014 13:31
- 0 Respostas
- 1688 Exibições
- Última mensagem por MundiTec

Sex Mar 21, 2014 13:31
Cálculo: Limites, Derivadas e Integrais
-
- [VALOR MÉDIO]
por magellanicLMC » Sex Fev 07, 2014 23:05
- 2 Respostas
- 1575 Exibições
- Última mensagem por magellanicLMC

Sáb Fev 08, 2014 17:00
Cálculo: Limites, Derivadas e Integrais
-
- Valor médio
por Janoca » Ter Jun 17, 2014 01:05
- 7 Respostas
- 4796 Exibições
- Última mensagem por alienante

Qua Jun 18, 2014 18:11
Cálculo: Limites, Derivadas e Integrais
-
- teorema do valor medio
por matmatco » Seg Nov 14, 2011 10:18
- 3 Respostas
- 2537 Exibições
- Última mensagem por LuizAquino

Seg Nov 14, 2011 20:46
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Unesp - 95 Números Complexos
Autor:
Alucard014 - Dom Ago 01, 2010 18:22
(UNESP - 95) Seja L o Afixo de um Número complexo

em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
Assunto:
Unesp - 95 Números Complexos
Autor:
MarceloFantini - Qui Ago 05, 2010 17:27
Seja

o ângulo entre o eixo horizontal e o afixo

. O triângulo é retângulo com catetos

e

, tal que

. Seja

o ângulo complementar. Então

. Como

, o ângulo que o afixo

formará com a horizontal será

, mas negativo pois tem de ser no quarto quadrante. Se

, então

. Como módulo é um:

.
Logo, o afixo é

.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.