• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cálculo, Valor Médio. Velocidade instantânea.

Cálculo, Valor Médio. Velocidade instantânea.

Mensagempor leocastilho » Qua Jun 12, 2013 12:35

Olá pessoal, estou com um problema aqui que não consigo resolver.

O velocimetro de um automóvel registra a velocidade de 50km/h quando ele passa por um marco quilométrico ao longo da rodovia. Quatro minutos mais tarde, quando o automóvel passa por um segundo marco a 5 Km do primeiro, o velocimetro registra 55Km/h. Use o teorema do valor médio para provar que a velocidade excedeu a 70 Km/h em alguns instântes enquanto o automovel percorria a distância entre os dois marcos.

Primeiramente eu tentei criar um gráfico do tempo em função da velocidade e apliquei na fórmula do valor médio


f '(c) = f(b) - f(a)/ b - a
quando o tempo é 4 a velocidade é 55, logo f(4) = 55
quando o tempo é 0 a velocidade é 50, logo f(0)= 50
f '(c) = 55 - 50 / 4 - 0
f '(c) = 5/4

Apartir deste ponto já não sei o que posso fazer =/. Outro problema é que não sei aonde posso usar a distância de 5 Km entre os marcos.

Obrigado desde já.
leocastilho
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Jun 12, 2013 12:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Cálculo, Valor Médio. Velocidade instantânea.

Mensagempor e8group » Qua Jun 12, 2013 22:40

Vamos tentar ,considere a função X na variável t que fornece a posição do automóvel .Suponha que no instante t_k,tem-se X(t_k) = x_k km para algum x_k > 0 e v(t_k) = X'(t_k) = 50km/h ,mas sabemos que após 4 min , X(t_n) = (5+x_k)km com t_n = t_k + 4min (pois X(t_n) - X(t_k) = 5km ) .Mas ,pelo TVM , existe algum c em (t_k,t_n) tal que ,X'(c) = v(c) = \frac{X(t_n) - X(t_k)}{t_n - t_k} =\frac{5km}{4min} =75km/h .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59