• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Propriedades Operatórias do Limite

Propriedades Operatórias do Limite

Mensagempor J0elKim » Qui Abr 18, 2013 22:55

Oi! Minha dúvida é: quando não posso usar as propriedades operatórias?
Exemplo de um caso em que os resultados (usando e não usando as propriedades) não bateram:


Calcule: lim_{x\to0}\frac{x-tgx}{x+tgx}

Minha resposta usando diretamente as propriedades: (como lim x->0 de x+tgx é diferente de zero) o limite é igual à 0-1/0+1 = -1
Usando a propriedade só depois de abrir as tangentes e simplificar todos os termos por x, o resultado foi 0 (resultado correto pelo gabarito)

Alguem poderia esclarecer a dúvida e me explicar essas situações?

Obrigado
J0elKim
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Abr 18, 2013 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Economia
Andamento: cursando

Re: Propriedades Operatórias do Limite

Mensagempor e8group » Sex Abr 19, 2013 00:08

Neste caso não podemos aplicar uma das regras operatórias de limites ,regra esta do quociente .Pois ,pela propriedade "limite da soma é a soma dos limites ", concluímos que tanto o numerador quanto o denominador tendem a zero quando se aproxima de zero . Logo ,este limite apresenta uma forma indeterminada "0/0" . Devemos manipular a expressão com objetivo de eliminar esta indeterminação .Antes de prosseguir com a solução ,gostaria de ressaltar que \lim_{x\to 0} tan(x)/x = 1 .(Dica : Observe que tan(x)/x = \frac{\dfrac{sin(x)}{cos(x)}}{x} = \frac{sin(x)}{x} \cdot \frac{1}{cos(x)} ;assim ,quando x\to 0 , \frac{sin(x)}{x} \to 1 e 1/cos(x) \to 1 e portanto segue o resultado do limite) .
Visto o resultado do limite acima é fácil ver que o "artifício" que vamos usar p/ sairmos da indeterminação será dividir x -tan(x) e x +tan(x) por x ,desta forma não vamos alterar o resultado e esta operação é valida uma vez que x \neq 0 .Segue então ,

\lim_{x\to0} \frac{x -tan(x)}{x +tan(x)}  = \lim_{x\to0} \frac{\dfrac{x -tan(x)}{x}}{\dfrac{x +tan(x)}{x}}   =  \lim_{x\to0} \frac{1-\dfrac{tan(x)}{x}}{1 +\dfrac{tan(x)}{x}} .Agora tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Propriedades Operatórias do Limite

Mensagempor J0elKim » Dom Abr 21, 2013 19:59

Conclusão... zero =D!

Obrigado por me ajudar achar o erro hahaha
J0elKim
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Abr 18, 2013 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Economia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: