• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[método dos pontos críticos] comportamento de uma função

[método dos pontos críticos] comportamento de uma função

Mensagempor Ge_dutra » Qua Abr 03, 2013 20:34

Boa noite,

Tenho uma dúvida teórica..Quando calculamos os pontos críticos de uma função, através do teste da 1ª derivada, e encontramos o número zero como um ponto crítico, esse nem sempre é usado para analisar o comportamento de uma função (crescente e decrescente). Gostaria de saber o porque disso ocorrer.

Desde já, obrigada.
Ge_dutra
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Jan 28, 2013 09:45
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [método dos pontos críticos] comportamento de uma função

Mensagempor e8group » Qua Abr 03, 2013 21:19

Não sei se compreendi a sua dúvida ,mas os pontos críticos são apenas candidatos a serem máximos[mínimos] locais(é o que podemos afirmar neste instante). Uma função f é crescente se \forall x_1,x_2 \in  D_f e x_1 > x_ 2 \implies  f(x_1) > f(x_2) .Por outro lado f é decrescente se \forall x_1,x_2 \in D_f e x_1 < x_ 2 \implies  f(x_1) > f(x_2) .Alternativamente , f é crescente se f'(x) \geq 0 \forall x\in \mathbb{R} e f é decrescente se f' < 0 , \forall x\in \mathbb{R} .

Exemplo :

f(x) = x^3 que é estritamente crescente pois f'(x) = 3x^2 \geq 0 \forall x\in \mathbb{R} .Neste caso 0 é ponto crítico da função ,mas 0 não é máximo e nem mínimo da função f ,pois f'(x) = 3x^2 \geq 0 \forall x\in \mathbb{R}

Em geral , se c \in D_f e f'(c) = 0 e se para algum x \in (c-\delta ,c + \delta) e f'(x) mudar de sinal ,então o ponto c será máximo[ou mínimo] local .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [método dos pontos críticos] comportamento de uma função

Mensagempor Ge_dutra » Qua Abr 03, 2013 21:38

Não compreendi, pq o zero não é máximo nem mínimo no seu exemplo?
No estudo do comportamento da função, eu não colocarei todos os pontos críticos que achar, mas sim somente aqueles que assumem papel de máximo ou mínimo da função, é isso?
Ge_dutra
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Jan 28, 2013 09:45
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [método dos pontos críticos] comportamento de uma função

Mensagempor temujin » Qui Abr 04, 2013 00:58

O zero não é máximo nem mínimo no exemplo, justamente pq a derivada não muda de sinal. O que caracteriza um ponto como um extremo (máx ou min) é a mudança de sinal. Por exemplo, compare duas funções x^2 \ e \ x^3. Ambas tem o zero como ponto crítico, certo?

Mas se vc olhar pra derivada, no caso da f(X)= x^2, f'(x)= 2x. Então, para valores negativos de x, f'(x) é negativa. Para valores positivos de x, f'I(x) é positiva. Ou seja, a função vem decrescendo pela esquerda, vira no zero e passa a crescer para valores à direita.

Agora veja o caso da f(x)=x^3, f'(x)=3x^2. Para valores negativos, f'(x) é positiva. No zero, ela é zero mesmo. E para valores positivos ela tb é positiva. Não há mudança de sinal.

Ser ponto crítico é condição necessária, mas não suficiente, para ser um extremo.
temujin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Qui Mar 14, 2013 15:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: formado

Re: [método dos pontos críticos] comportamento de uma função

Mensagempor Ge_dutra » Qui Abr 04, 2013 20:09

Ok temujin, obrigada!
Ge_dutra
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Jan 28, 2013 09:45
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?