• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral] - Centro de Massa da barra

[Integral] - Centro de Massa da barra

Mensagempor klueger » Sex Mar 22, 2013 17:07

Já vi sobre a matéria, mas não consegui...

Calcular a massa total E o centro de massa de uma barra de 8 m de comprimento, sabendo que a
densidade linear num ponto é uma função do 1º grau da distância total deste ponto ao extremo direito da barra.

A densidade linear no extremo direito da barra é 2 kg/m e no meio da barra é 4 kg/m.

Fórmulas:
m=\int\limits_{a}^{b}f(x).dx - Para Massa
x=\frac{1}{m}.\int\limits_{a}^{b}xf(x).dx - Para Centro de Massa
klueger
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Dom Fev 03, 2013 15:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Integral] - Centro de Massa da barra

Mensagempor young_jedi » Sáb Mar 23, 2013 16:53

essse f(x) é a função densidade, primeiro voce tem que encontrar essa função
como ele diz que é uma função do primeiro grau com relação ao extremo direito a barra ela é da forma

f(x)=ax+b

temos que como seu comprimeto é 8 metros, vamos assumeir que seu extremo esquerdo esta no ponto 0 então seu extremo direito estara no ponto x=0 e seu centor no ponto x=4 então temos

2=a.8+b
4=a.4+b

resolvendo os sistema

a=-\frac{1}{2}

b=6

então

f(x)=-\frac{1}{2}x+6

substitua nas integrais e resolva pra a inregral indo de 0 a 8, comente qualquer duvida
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.