por Ge_dutra » Qui Mar 21, 2013 22:51
Mostre que arcsen(a) + arcsen(b) = arcsen(a
![\sqrt[]{1-b^2} + b\sqrt[]{1-a^2} \sqrt[]{1-b^2} + b\sqrt[]{1-a^2}](/latexrender/pictures/0cd7cc2e28d07b017c1fface8b99c099.png)
)
Não tenho ideia de como iniciar..
Alguém para ajudar?
-
Ge_dutra
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Seg Jan 28, 2013 09:45
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por e8group » Sex Mar 22, 2013 00:19
Definimos

e

,então

e

se , e somente se ,

e

.
Vamos começar desenvolvendo

que é equivalente a

.
Pela identidade trigonométrica fundamental

, concluímos
que se
![c,d \in [0,\pi/2] c,d \in [0,\pi/2]](/latexrender/pictures/e36b5c9d23c350e8429bd63dfa4aa0a1.png)
,ou seja , se
![a,b \in [0,1] a,b \in [0,1]](/latexrender/pictures/f3658e9e08765127e56e93a23f7302d3.png)
vale as relações

e

. Assim ,

e portanto

, isto é ,

-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Ge_dutra » Sex Mar 22, 2013 08:56
Obrigada!
-
Ge_dutra
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Seg Jan 28, 2013 09:45
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- prova da puc
por cleversonluizv » Qui Mar 14, 2013 15:23
- 1 Respostas
- 1274 Exibições
- Última mensagem por young_jedi

Sex Mar 15, 2013 11:36
Análise Combinatória
-
- Prova 1 - 2002
por admin » Sáb Jul 21, 2007 05:53
- 0 Respostas
- 1413 Exibições
- Última mensagem por admin

Sáb Jul 21, 2007 05:53
Cálculo Numérico e Aplicações
-
- Prova 1 - 2004
por admin » Sáb Jul 21, 2007 05:55
- 0 Respostas
- 1516 Exibições
- Última mensagem por admin

Sáb Jul 21, 2007 05:55
Cálculo Numérico e Aplicações
-
- Prova 2 - 2004
por admin » Sáb Jul 21, 2007 05:56
- 0 Respostas
- 1483 Exibições
- Última mensagem por admin

Sáb Jul 21, 2007 05:56
Cálculo Numérico e Aplicações
-
- exercicio de prova 3º ano
por hyenrique » Ter Fev 23, 2010 16:46
- 4 Respostas
- 5409 Exibições
- Última mensagem por hyenrique

Ter Fev 23, 2010 18:22
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.