• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral] Comprimento de Arco

[Integral] Comprimento de Arco

Mensagempor klueger » Qui Mar 21, 2013 10:19

Não tenho noção dessa...

Para construir telhas corrugadas usam-se folhas planas de metal com comprimento w.
Ao processar estas folhas de metal o perfil da telha tem a forma de uma função senoidal com 60cm de comprimento e 4 cm de espessura.
A função senoidal é dada por y=2.sen(\frac{\pi.x}{15})

a) Qual a integral que dará o comprimento de arco?

b) Qual o comprimento da curva dado por x=\frac{1}{3}.y^3+\frac{1}{4y}, sendo 1\leq y \leq 3
klueger
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Dom Fev 03, 2013 15:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Integral] Comprimento de Arco

Mensagempor Russman » Qui Mar 21, 2013 12:26

Dada uma curva y=y(x), o seu comprimento de x=a até x=b é dado por

S=\int_{a}^{b}\sqrt{1+\left (\frac{\mathrm{d} y}{\mathrm{d} x}  \right )^2}dx.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Integral] Comprimento de Arco

Mensagempor klueger » Qui Mar 21, 2013 12:36

Não esclareceu tudo ainda :/
klueger
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Dom Fev 03, 2013 15:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Integral] Comprimento de Arco

Mensagempor Russman » Qui Mar 21, 2013 12:43

Comece derivando a função e elevando essa derivada ao quadrado, como manda a fórmula.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Integral] Comprimento de Arco

Mensagempor klueger » Qui Mar 21, 2013 12:47

Obrigado. Tentarei fazer aqui :y:

Quanto a letra A, a integral que forma o arco, seria deduzida como?
klueger
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Dom Fev 03, 2013 15:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Integral] Comprimento de Arco

Mensagempor Russman » Qui Mar 21, 2013 12:54

É essa integral que eu te escrevi.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.