• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[GRÁFICO INTEGRAL]

[GRÁFICO INTEGRAL]

Mensagempor paulorobertoqf » Seg Mar 04, 2013 14:06

Considere a função f(x), cujo gráfico é mostrado no anexo ''Gráfico''. Define-se g(x) pela seguinte expressão:

g(x) = \int_{0}^{x} f(\lambda)d\lambda

A expressão de g(x) para o intervalo 5 \leq 8 é:

A) g(x) = -2{x}^{2} + 32x - 100
B) g(x) = -2{x}^{2} + 32x - 60
C) g(x) = -4{x}^{2} + 58x - 140
D) g(x) = 32x - 110
E) g(x) = -2{x}^{2} + 32x + 50

Calculei a área pelo gráfico fazendo (8-5)x12 e dividindo por 3, que deu 12, depois fiz a integral definida de 5 a 8 e várias das resposta dão 12, então não sei qual escolher.

A resposta correta é: B, mas não sei o porque.
Anexos
Gráfico.png
Gráfico
paulorobertoqf
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Fev 20, 2013 13:34
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [GRÁFICO INTEGRAL]

Mensagempor young_jedi » Seg Mar 04, 2013 23:22

voce tem que

primeiro voce tem que parametrizar as duas reta da função para os dois intervalos
no primeiro intervalo 0<x<5

f(x)=4.x

e para 5<x<8

f(x)=4.(8-x)

f(x)=32-4x

então a integral que voce quer fica

\int_{0}^{x}f(\lambda)d\lambda=\int_{0}^{5}4\lambda.d\lambda+\int_{5}^{x}(32-4\lambda).d\lambda

calcule a integral e comente qualquer duvida
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.