• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral]

[Integral]

Mensagempor gabriel feron » Qua Fev 27, 2013 17:05

Fiz uma prova recentemente e caiu a seguinte questão: \int_{0}^{\pi/2}cosx.sin^5xdx, vou fazer uma prova daqui 2 semanas, com conteúdos mais avançados de calculo 2, mas estou revisando os conceitos gerais, por isso gostaria de ajuda para resolver essa questão, pois errei na prova e não estou conseguindo resolve-la... obrigado!
gabriel feron
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Seg Abr 16, 2012 03:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Hídrica
Andamento: cursando

Re: [Integral]

Mensagempor Jhonata » Qua Fev 27, 2013 17:28

gabriel feron escreveu:Fiz uma prova recentemente e caiu a seguinte questão: \int_{0}^{\pi/2}cosx.sin^5xdx, vou fazer uma prova daqui 2 semanas, com conteúdos mais avançados de calculo 2, mas estou revisando os conceitos gerais, por isso gostaria de ajuda para resolver essa questão, pois errei na prova e não estou conseguindo resolve-la... obrigado!


Essa é uma integral trigonométrica definida.
Como o termo seno é impar, você vai guardar um fator seno e usar a identidade sen²x= 1 - cos²x.

Gogo!

\int_{0}^{\pi/2}cosx.sin^5xdx = \int_{0}^{\pi/2} cosx.sinx(sin^2x)^2 dx = \int_{0}^{\pi/2}cosx.sinx(1-cos^2x)^2 dx

Agora fazemos uma substituição simples de modo que : u = cosx e du = -senx e vamos obter:

- \int_{}^{}u(1-u^2)^2du

Bem, note que na integral eu não coloquei o intervalo de integração, isso porque você irá voltar a variável x e integrará no intervalo (0, pi/2) como na integral inicial.
Tente resolver a partir daí, se tiver alguma dúvida, poste que se eu souber ajudarei com certeza.

Boa sorte, abraços.
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.