• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites com Integrais

Limites com Integrais

Mensagempor Tixa11 » Dom Jan 13, 2013 15:11

\lim_{x->{0}^{+}}\int_{x}^{1}\frac{1}{\sqrt[3]{t}}dt

Alguém consegue explicar-me que fazer?
Tixa11
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Sáb Nov 10, 2012 12:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Bioquimica
Andamento: cursando

Re: Limites com Integrais

Mensagempor e8group » Dom Jan 13, 2013 18:53

Vamos deixar F(t)  = \int \frac{1}{\sqrt[3]{t} } dt .

1) \int \frac{1}{\sqrt[3]{t} } dt = \int  \frac{1}{t^{1/3} } dt  = \int t^{-1/3} dt .

Resolva 1) pelos métodos usuais .

2 ) \int_x^1 \frac{1}{\sqrt[3]{t} } dt      =  F(1) - F(x) .

Agora note que ,através de 2) ,\lim_{x\to0} \int_x^1 \frac{1}{\sqrt[3]{t} } dt  = \lim_{x\to0}  \left (F(1) - F(x)\right)

tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limites com Integrais

Mensagempor Tixa11 » Dom Jan 13, 2013 19:31

santhiago escreveu:Vamos deixar F(t)  = \int \frac{1}{\sqrt[3]{t} } dt .

1) \int \frac{1}{\sqrt[3]{t} } dt = \int  \frac{1}{t^{1/3} } dt  = \int t^{-1/3} dt .

Resolva 1) pelos métodos usuais .

2 ) \int_x^1 \frac{1}{\sqrt[3]{t} } dt      =  F(1) - F(x) .

Agora note que ,através de 2) ,\lim_{x\to0} \int_x^1 \frac{1}{\sqrt[3]{t} } dt  = \lim_{x\to0}  \left (F(1) - F(x)\right)

tente concluir .





Muito obrigado, afinal era bem simples (;
Tixa11
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Sáb Nov 10, 2012 12:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Bioquimica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 11 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.