• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites com Integrais

Limites com Integrais

Mensagempor Tixa11 » Dom Jan 13, 2013 15:11

\lim_{x->{0}^{+}}\int_{x}^{1}\frac{1}{\sqrt[3]{t}}dt

Alguém consegue explicar-me que fazer?
Tixa11
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Sáb Nov 10, 2012 12:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Bioquimica
Andamento: cursando

Re: Limites com Integrais

Mensagempor e8group » Dom Jan 13, 2013 18:53

Vamos deixar F(t)  = \int \frac{1}{\sqrt[3]{t} } dt .

1) \int \frac{1}{\sqrt[3]{t} } dt = \int  \frac{1}{t^{1/3} } dt  = \int t^{-1/3} dt .

Resolva 1) pelos métodos usuais .

2 ) \int_x^1 \frac{1}{\sqrt[3]{t} } dt      =  F(1) - F(x) .

Agora note que ,através de 2) ,\lim_{x\to0} \int_x^1 \frac{1}{\sqrt[3]{t} } dt  = \lim_{x\to0}  \left (F(1) - F(x)\right)

tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limites com Integrais

Mensagempor Tixa11 » Dom Jan 13, 2013 19:31

santhiago escreveu:Vamos deixar F(t)  = \int \frac{1}{\sqrt[3]{t} } dt .

1) \int \frac{1}{\sqrt[3]{t} } dt = \int  \frac{1}{t^{1/3} } dt  = \int t^{-1/3} dt .

Resolva 1) pelos métodos usuais .

2 ) \int_x^1 \frac{1}{\sqrt[3]{t} } dt      =  F(1) - F(x) .

Agora note que ,através de 2) ,\lim_{x\to0} \int_x^1 \frac{1}{\sqrt[3]{t} } dt  = \lim_{x\to0}  \left (F(1) - F(x)\right)

tente concluir .





Muito obrigado, afinal era bem simples (;
Tixa11
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Sáb Nov 10, 2012 12:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Bioquimica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)